Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun 26;17(1):227.
doi: 10.1186/s12917-021-02926-6.

Interaction of porcine circovirus-like virus P1 capsid protein with host proteins

Affiliations

Interaction of porcine circovirus-like virus P1 capsid protein with host proteins

Libin Wen et al. BMC Vet Res. .

Abstract

Background: Porcine circovirus-like virus P1 is a relatively new kind of virus that is closely related to the post-weaning multisystemic wasting syndrome, congenital tremors, and abortions in swine. The molecular mechanisms of P1 virus infection and pathogenesis are fully unknown. To analyze P1 and its host interactions, we used a yeast two-hybrid (Y2H) assay to identify cellular proteins interacting with the Cap of the P1 virus. In this study, the Cap of the P1 virus exhibited no self-activation and toxicity to yeast cells and was used as bait to screen the Y2H library prepared from the pancreas tissue.

Results: Five cellular proteins (EEP, Ral GDS, Bcl-2-L-12, CPS1, and one not identified) were found to interact with P1 Cap. The interaction between Cap and Ral GDS was confirmed by co-immunoprecipitation.

Conclusions: Our data are likely to support the future investigation of the underlying mechanism of P1 infection and pathogenesis.

Keywords: Cap; Porcine circovirus-like virus P1; cellular protein; co-immunoprecipitation; yeast two-hybrid assay.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
PCR products of the 24 randomly selected clones in 1.0 % agarose gel electrophoresis. DL12000 (Takara) was used as the marker. An enlarged marker is shown on the right side of the figure. The number of the lanes indicates the 24 randomly selected clones
Fig. 2
Fig. 2
Detection of self-activation of the bait protein. The AH109 yeast cells that were cotransformed with pGADT7 and pGBKT7-ORF1, pGADT7-LargeT and pGBKT7-p53 (as a positive control), pGADT7-LargeT and pGBKT7-laminC (as a negative control), were plated on SD-TL and SD-TLHA medium for the auto activation test. Yeast co-transfected with plasmids pGADT7 and pGBKT7-ORF1 cannot grow on SD-TLHA medium and did not turn blue in the β-galactosidase assay, indicating that pGBKT7-ORF1 does not autonomously activate the reporter genes in yeast cells without a prey protein. The images were cropped, and full-length images are included in Supplementary Fig. 2a to 2c
Fig. 3
Fig. 3
Yeast two-hybrid assay with P1 Cap gene products. The 20 initial positive clones (1 to 20) were inoculated into SD-TL and SD-TLHA medium and analyzed for lacZ reporter gene expression. The 13 clones (1–5, 7, 10–12, 16–18, and 20) can grow on SD-TLHA medium and turn blue in the β-galactosidase assay, indicating that these clones are real positive clones
Fig. 4
Fig. 4
Retransformation validation of representative five host genes interacting with P1 Cap gene products in yeast two-hybrid system. The five clones (1, 3, 10, 16, and 18) were inoculated into SD-TL and SD-TLHA medium plates and analyzed for lacZ expression. The five clones that grew on SD-TLHA medium and turned blue in the yeast were positive. The images were cropped, and full-length images are included in Supplementary Fig. 4a to 4c
Fig. 5
Fig. 5
Co-immunoprecipitation of Cap interacted with Ral GDS. HEK 293 Graham cells were co-transfected with pcDNA3.1-Ral GDS-FLAG and pcDNA3.1-His (C1); pcDNA3.1-Ral GDS-FLAG and pcDNA3.1-ORF1-His (T1); pcDNA3.1-FLAG and pcDNA3.1-ORF1-His (C2); and pcDNA3.1-Ral GDS-FLAG and pcDNA3.1-ORF1-His (T2). The immune complexes were incubated with anti-FLAG (A) or anti-His antibodies (B), and then pre-coupled to protein A agarose beads and subjected to Western blotting analysis. The gels/blots were cropped, and full-length blots/gels are presented in Supplementary Fig. 5a to 5d. The cropped Fig. 5 A comes from the Supplementary Fig. 5a and 5b; and B comes from the Supplementary Fig. 5c and 5d

Similar articles

Cited by

References

    1. Tischer I, Gelderblom H, Vettermann W, Koch MA. A very small porcine virus with circular single-stranded DNA. Nature. 1982;295:64–66. doi: 10.1038/295064a0. - DOI - PubMed
    1. Harding JCS, Clark EG. Recognizing and diagnosing postweaning multisystemic wasting syndrome (PMWS) Swine Health Prod. 1997;5:201–203.
    1. Palinski R, Piñeyro P, Shang P, Yuan F, Guo R, Fang Y, et al. A novel porcine circovirus distantly related to known circoviruses is associated with porcine dermatitis and nephropathy syndrome and reproductive failure. J Virol. 2017;91:e01879-16. doi: 10.1128/JVI.01879-16. - DOI - PMC - PubMed
    1. Phan TG, Giannitti F, Rossow S, Marthaler D, Knutson TP, Li L, et al. Detection of a novel circovirus PCV3 in pigs with cardiac and multi-systemic inflammation. Virol J. 2016;13:184. doi: 10.1186/s12985-016-0642-z. - DOI - PMC - PubMed
    1. Zhang HH, Hu WQ, Li JY, Liu TN, Zhou JY, Opriessnig T, et al. Novel Circovirus species identified in farmed pigs designated as porcine Circovirus 4, Hunan Province, China. Transbound Emerg Dis. 2020;67(3):1057–1061. doi: 10.1111/tbed.13446. - DOI - PubMed

LinkOut - more resources