Glioblastoma multiforme prognosis: MRI missing modality generation, segmentation and radiogenomic survival prediction
- PMID: 34175548
- DOI: 10.1016/j.compmedimag.2021.101906
Glioblastoma multiforme prognosis: MRI missing modality generation, segmentation and radiogenomic survival prediction
Abstract
The accurate prognosis of glioblastoma multiforme (GBM) plays an essential role in planning correlated surgeries and treatments. The conventional models of survival prediction rely on radiomic features using magnetic resonance imaging (MRI). In this paper, we propose a radiogenomic overall survival (OS) prediction approach by incorporating gene expression data with radiomic features such as shape, geometry, and clinical information. We exploit TCGA (The Cancer Genomic Atlas) dataset and synthesize the missing MRI modalities using a fully convolutional network (FCN) in a conditional generative adversarial network (cGAN). Meanwhile, the same FCN architecture enables the tumor segmentation from the available and the synthesized MRI modalities. The proposed FCN architecture comprises octave convolution (OctConv) and a novel decoder, with skip connections in spatial and channel squeeze & excitation (skip-scSE) block. The OctConv can process low and high-frequency features individually and improve model efficiency by reducing channel-wise redundancy. Skip-scSE applies spatial and channel-wise excitation to signify the essential features and reduces the sparsity in deeper layers learning parameters using skip connections. The proposed approaches are evaluated by comparative experiments with state-of-the-art models in synthesis, segmentation, and overall survival (OS) prediction. We observe that adding missing MRI modality improves the segmentation prediction, and expression levels of gene markers have a high contribution in the GBM prognosis prediction, and fused radiogenomic features boost the OS estimation.
Keywords: Gene expression; Glioblastoma; Octave convolution; Radiogenomic; Survival prediction; Synthesis.
Copyright © 2021 Elsevier Ltd. All rights reserved.
Similar articles
-
Radiogenomics model for overall survival prediction of glioblastoma.Med Biol Eng Comput. 2020 Aug;58(8):1767-1777. doi: 10.1007/s11517-020-02179-9. Epub 2020 Jun 3. Med Biol Eng Comput. 2020. PMID: 32488372
-
Performance improvement of weakly supervised fully convolutional networks by skip connections for brain structure segmentation.Med Phys. 2021 Nov;48(11):7215-7227. doi: 10.1002/mp.15192. Epub 2021 Sep 13. Med Phys. 2021. PMID: 34453333
-
A Coclinical Radiogenomic Validation Study: Conserved Magnetic Resonance Radiomic Appearance of Periostin-Expressing Glioblastoma in Patients and Xenograft Models.Clin Cancer Res. 2018 Dec 15;24(24):6288-6299. doi: 10.1158/1078-0432.CCR-17-3420. Epub 2018 Jul 27. Clin Cancer Res. 2018. PMID: 30054278 Free PMC article.
-
Volumetric quantification of glioblastoma: experiences with different measurement techniques and impact on survival.J Neurooncol. 2017 Nov;135(2):391-402. doi: 10.1007/s11060-017-2587-5. Epub 2017 Jul 28. J Neurooncol. 2017. PMID: 28755324 Review.
-
State-of-the-art techniques using pre-operative brain MRI scans for survival prediction of glioblastoma multiforme patients and future research directions.Clin Transl Imaging. 2022;10(4):355-389. doi: 10.1007/s40336-022-00487-8. Epub 2022 Mar 3. Clin Transl Imaging. 2022. PMID: 35261910 Free PMC article. Review.
Cited by
-
Deep Learning Techniques with Genomic Data in Cancer Prognosis: A Comprehensive Review of the 2021-2023 Literature.Biology (Basel). 2023 Jun 21;12(7):893. doi: 10.3390/biology12070893. Biology (Basel). 2023. PMID: 37508326 Free PMC article.
-
From Images to Genes: Radiogenomics Based on Artificial Intelligence to Achieve Non-Invasive Precision Medicine in Cancer Patients.Adv Sci (Weinh). 2025 Jan;12(2):e2408069. doi: 10.1002/advs.202408069. Epub 2024 Nov 13. Adv Sci (Weinh). 2025. PMID: 39535476 Free PMC article. Review.
-
The application value of deep learning in the background of precision medicine in glioblastoma.Sci Prog. 2024 Jan-Mar;107(1):368504231223353. doi: 10.1177/00368504231223353. Sci Prog. 2024. PMID: 38262933 Free PMC article. Review.
-
Exploring adult glioma through MRI: A review of publicly available datasets to guide efficient image analysis.Neurooncol Adv. 2025 Jan 28;7(1):vdae197. doi: 10.1093/noajnl/vdae197. eCollection 2025 Jan-Dec. Neurooncol Adv. 2025. PMID: 39877749 Free PMC article.
-
Prediction of prognosis in glioblastoma with radiomics features extracted by synthetic MRI images using cycle-consistent GAN.Phys Eng Sci Med. 2024 Sep;47(3):1227-1243. doi: 10.1007/s13246-024-01443-8. Epub 2024 Jun 17. Phys Eng Sci Med. 2024. PMID: 38884673 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources