Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb;16(1):118-129.
doi: 10.1007/s11682-021-00481-0. Epub 2021 Jun 26.

Cholinergic basal forebrain and hippocampal structure influence visuospatial memory in Parkinson's disease

Affiliations

Cholinergic basal forebrain and hippocampal structure influence visuospatial memory in Parkinson's disease

Rok Berlot et al. Brain Imaging Behav. 2022 Feb.

Abstract

Visuospatial impairment in Parkinson's disease (PD) heralds the onset of a progressive dementia syndrome and might be associated with cholinergic dysfunction. It remains unclear however, whether degeneration of the cholinergic basal forebrain is directly related to cognitive decline, or whether relationships between this region and cognitive function are mediated by closely related brain structures such as those in the medial temporal lobe. To evaluate relationships between structure of the cholinergic basal forebrain, medial temporal lobe and cognition, 27 PD patients without dementia and 20 controls underwent neuropsychological assessment and MRI. Volumes of the cholinergic basal forebrain nuclei, the entorhinal cortex, the hippocampus and its subfields were measured. Regression models utilised basal forebrain and hippocampal volumetric measures to predict cognitive performance. In PD, visuospatial memory (but not verbal memory or executive function) was correlated with hippocampal volume, particularly CA2-3, and basal forebrain subregion Ch1-2, but not Ch4. In addition, hippocampal volume was correlated with Ch1-2 in PD. The relationship between Ch1-2 and visuospatial memory was mediated by CA2-3 integrity. There were no correlations between cognitive and volumetric measures in controls. Our data imply that the integrity of the cholinergic basal forebrain is associated with subregional hippocampal volume. Additionally, a relationship between visuospatial function and cholinergic nuclei does exist, but is fully mediated by variations in hippocampal structure. These findings are consistent with the recent hypothesis that forebrain cholinergic system degeneration results in cognitive deficits via cholinergic denervation, and subsequent structural degeneration, of its target regions.

Keywords: Cholinergic system; Cognition; Cognitive decline; Parkinson’s disease; Structural MRI; Visuospatial function.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Aggleton, J. P., & Brown, M. W. (2006). Interleaving brain systems for episodic and recognition memory. Trends in Cognitive Sciences, 10(10), 455–463. https://doi.org/10.1016/j.tics.2006.08.003 - DOI - PubMed
    1. Agosta, F., Canu, E., Stefanova, E., Sarro, L., Tomić, A., Špica, V., et al. (2014). Mild cognitive impairment in Parkinson’s disease is associated with a distributed pattern of brain white matter damage. Human Brain Mapping, 35(5), 1921–1929. https://doi.org/10.1002/hbm.22302 - DOI - PubMed
    1. Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 270–279. https://doi.org/10.1016/j.jalz.2011.03.008 - DOI
    1. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113. https://doi.org/10.1016/j.neuroimage.2007.07.007 - DOI - PubMed
    1. Ashburner, J. (2009). Computational anatomy with the SPM software. Magnetic Resonance Imaging, 27(8), 1163–1174. https://doi.org/10.1016/j.mri.2009.01.006 - DOI - PubMed

MeSH terms

Substances

LinkOut - more resources