Tobacco mosaic virus infection stimulates the phosphorylation of a plant protein associated with double-stranded RNA-dependent protein kinase activity
- PMID: 3417665
Tobacco mosaic virus infection stimulates the phosphorylation of a plant protein associated with double-stranded RNA-dependent protein kinase activity
Abstract
The influence of tobacco mosaic virus (TMV) infection on nucleotide binding and phosphorylation of an Mr 68,000 host-encoded protein (p68) was examined. The phosphorylation of p68 in homogenates from TMV-infected tissues was 4-fold greater than in homogenates from mock inoculated tissues. Phosphorylation of p68 in extracts from mock inoculated tissues was enhanced by the addition of double-stranded (ds) RNA. Nucleotide photoaffinity labeling experiments indicate that p68 contains an ATP binding site with characteristics consistent with protein kinase activity. Antiserum raised against a dsRNA-dependent protein kinase activity. Antiserum raised against a dsRNA-dependent protein kinase from interferon-treated human cells immunoprecipitated p68 from extracts of TMV-infected tissue, and p68-containing immunocomplexes catalyzed the phosphorylation of endogenous p68. These data suggest that p68 may be an autophosphorylating, dsRNA-dependent protein kinase involved in viral pathogenesis. Based upon analogous functions demonstrated for dsRNA-dependent protein kinases in mammalian systems, p68 may have a role in the regulation of protein synthesis and viral replication in infected cells.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
