Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jul 14;16(5).
doi: 10.1088/1748-605X/ac0f47.

Onlay-graft of 3D printed Kagome-structure PCL scaffold incorporated with rhBMP-2 based on hyaluronic acid hydrogel

Affiliations

Onlay-graft of 3D printed Kagome-structure PCL scaffold incorporated with rhBMP-2 based on hyaluronic acid hydrogel

Jeong-Kui Ku et al. Biomed Mater. .

Abstract

The onlay-graft, one of the most difficult graft conditions, is used for diverse clinical conditions, including plastic and dental surgery. The graft should withstand continuous pressure from overlying tissues and have excellent bone formation capability in a limited bone contact situation. We recently developed a 3D printed Kagome-structured polycaprolactone (PCL) scaffold that has a stronger mechanical property. This study evaluated the clinical feasibility of this scaffold for onlay-graft use. The value of the scaffold containing recombinant human bone morphogenetic protein-2 in a hyaluronate-based hydrogel (rhBMP-2/HA) to enhance bone regeneration was also assessed. 3D-printed Kagome-PCL scaffolds alone (n= 12, group I) or loaded with rhBMP-2/HA (n= 12, group II) were grafted using a rat calvarial onlay-graft model. Following sacrifice at 2, 4, and 8 weeks, all 3D-printed Kagome-PCL scaffolds were accurately positioned and firmly integrated to the recipient bone. Micro-computed tomography and histology analyses revealed a constant height of the scaffolds over time in all animals. New bone grew into the scaffolds in both groups, but with greater volume in group II. These results suggest the promising clinical feasibility of the 3D-printed Kagome-PCL scaffold for onlay-graft use and it could substitute the conventional onlay-graft in the plastic and dental reconstructive surgery in the near future.

Keywords: 3D printing; bone morphogenetic protein-2; hyaluronic acid; onlay-graft; polycaprolactone; scaffolds.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources