High-throughput proteomics and AI for cancer biomarker discovery
- PMID: 34182017
- DOI: 10.1016/j.addr.2021.113844
High-throughput proteomics and AI for cancer biomarker discovery
Abstract
Biomarkers are assayed to assess biological and pathological status. Recent advances in high-throughput proteomic technology provide opportunities for developing next generation biomarkers for clinical practice aided by artificial intelligence (AI) based techniques. We summarize the advances and limitations of cancer biomarkers based on genomic and transcriptomic analysis, as well as classical antibody-based methodologies. Then we review recent progresses in mass spectrometry (MS)-based proteomics in terms of sample preparation, peptide fractionation by liquid chromatography (LC) and mass spectrometric data acquisition. We highlight applications of AI techniques in high-throughput clinical studies as compared with clinical decisions based on singular features. This review sets out our approach for discovering clinical biomarkers in studies using proteomic big data technology conjoined with computational and statistical methods.
Keywords: AI; Cancer biomarker; High-throughput proteomics; Mass spectrometry.
Copyright © 2021 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
