Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug:153:179-189.
doi: 10.1016/j.ejca.2021.05.019. Epub 2021 Jun 26.

Clinical decision support algorithm based on machine learning to assess the clinical response to anti-programmed death-1 therapy in patients with non-small-cell lung cancer

Affiliations

Clinical decision support algorithm based on machine learning to assess the clinical response to anti-programmed death-1 therapy in patients with non-small-cell lung cancer

Beung-Chul Ahn et al. Eur J Cancer. 2021 Aug.

Abstract

Objective: Anti-programmed death (PD)-1 therapy confers sustainable clinical benefits for patients with non-small-cell lung cancer (NSCLC), but only some patients respond to the treatment. Various clinical characteristics, including the PD-ligand 1 (PD-L1) level, are related to the anti-PD-1 response; however, none of these can independently serve as predictive biomarkers. Herein, we established a machine learning (ML)-based clinical decision support algorithm to predict the anti-PD-1 response by comprehensively combining the clinical information.

Materials and methods: We collected clinical data, including patient characteristics, mutations and laboratory findings, from the electronic medical records of 142 patients with NSCLC treated with anti-PD-1 therapy; these were analysed for the clinical outcome as the discovery set. Nineteen clinically meaningful features were used in supervised ML algorithms, including LightGBM, XGBoost, multilayer neural network, ridge regression and linear discriminant analysis, to predict anti-PD-1 responses. Based on each ML algorithm's prediction performance, the optimal ML was selected and validated in an independent validation set of PD-1 inhibitor-treated patients.

Results: Several factors, including PD-L1 expression, tumour burden and neutrophil-to-lymphocyte ratio, could independently predict the anti-PD-1 response in the discovery set. ML platforms based on the LightGBM algorithm using 19 clinical features showed more significant prediction performance (area under the curve [AUC] 0.788) than on individual clinical features and traditional multivariate logistic regression (AUC 0.759).

Conclusion: Collectively, our LightGBM algorithm offers a clinical decision support model to predict the anti-PD-1 response in patients with NSCLC.

Keywords: Anti–programmed death-1; Clinical decision support system; Immune checkpoint inhibitor; Lung cancer; Machine learning; Non-invasive biomarker.

PubMed Disclaimer

Publication types

Substances