Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Oct 5:419:126447.
doi: 10.1016/j.jhazmat.2021.126447. Epub 2021 Jun 20.

Facile synthesis of oxygen vacancies enriched α-Fe2O3 for peroxymonosulfate activation: A non-radical process for sulfamethoxazole degradation

Affiliations

Facile synthesis of oxygen vacancies enriched α-Fe2O3 for peroxymonosulfate activation: A non-radical process for sulfamethoxazole degradation

Qingdong Qin et al. J Hazard Mater. .

Abstract

Hematite (α-Fe2O3) has been commonly used as an eco-friendly catalyst for peroxymonosulfate (PMS) to generate free radicals (SO4•- and/or •OH). However, the activation efficiency of PMS relies heavily on the conversion of Fe(III) to Fe(II) that is slow and rate-limiting. In this study, oxygen vacancies enriched α-Fe2O3 was prepared from thermally treated goethite (α-FeOOH) and employed as a PMS activator. Systematic characterization demonstrated that α-Fe2O3 with most abundant oxygen vacancies could be obtained by heating α-FeOOH at 300 °C. The as-prepared α-Fe2O3 exhibited excellent catalytic activity in activation of PMS for oxidation of sulfamethoxazole (SMX, k = 0.04 min-1). The SMX degradation rate was found to be positively correlated with the concentration of oxygen vacancies. Quenching experiments, EPR, LC/MS and XPS analysis revealed that singlet oxygen (1O2) was the predominant reactive oxygen species. The effects of pH, PMS dosage, catalyst loading, temperature, and anions on SMX degradation were comprehensively investigated. Moreover, the plausible degradation pathways of SMX in the α-Fe2O3/PMS system were proposed. This work not only provides a valuable insight into the mechanism of PMS activation by α-Fe2O3 but also establishes a new strategy for the design of more efficient and practical iron-based catalyst for PMS activation.

Keywords: Iron-based catalyst; Oxygen vacancy; Peroxymonosulfate; Singlet oxygen; Sulfamethoxazole.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources