Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun 28;11(1):13378.
doi: 10.1038/s41598-021-92677-z.

A rapid near-patient detection system for SARS-CoV-2 using saliva

Affiliations

A rapid near-patient detection system for SARS-CoV-2 using saliva

Noah B Toppings et al. Sci Rep. .

Abstract

The highly infectious nature of SARS-CoV-2 necessitates the use of widespread testing to control the spread of the virus. Presently, the standard molecular testing method (reverse transcriptase-polymerase chain reaction, RT-PCR) is restricted to the laboratory, time-consuming, and costly. This increases the turnaround time for getting test results. This study sought to develop a rapid, near-patient saliva-based test for COVID-19 (Saliva-Dry LAMP) with similar accuracy to that of standard RT-PCR tests. A lyophilized dual-target reverse transcription-loop-mediated isothermal amplification (RT-LAMP) test with fluorometric detection by the naked eye was developed. The assay relies on dry reagents that are room temperature stable. A device containing a centrifuge, heat block, and blue LED light system was manufactured to reduce the cost of performing the assay. This test has a limit of detection of 1 copy/µL and achieved a positive percent agreement of 100% [95% CI 88.43% to 100.0%] and a negative percent agreement of 96.7% [95% CI 82.78-99.92%] relative to a reference standard test. Saliva-Dry LAMP can be completed in 105 min. Precision, cross-reactivity, and interfering substances analysis met international regulatory standards. The combination of ease of sample collection, dry reagents, visual detection, low capital equipment cost, and excellent analytical sensitivity make Saliva-Dry LAMP particularly useful for resource-limited settings.

PubMed Disclaimer

Conflict of interest statement

DRP is scientific advisor to Illucidx Inc., a University of Calgary start-up company supported by Innovate Calgary, which holds patents related to LAMP technology. ANM is a technical advisor to Illucidx Inc. All other authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Visual results of Saliva-Dry LAMP reactions as viewed under a blue light transilluminator. The two reactions on the left are negative (orange) and the two reactions on the right (bright green) are positive read outs.
Figure 2
Figure 2
The Biobox was Biobox manufactured to perform the Saliva-Dry LAMP experiments. (A) Computer-aided design drawing with exploded view of the Biobox. The device is comprised of a heat block, centrifuge, and blue LED transilluminator which met specifications to perform the Saliva-Dry LAMP reaction. Photographs of the side (B) and top (C) view of the Biobox are shown for reference.
Figure 3
Figure 3
Saliva-Dry LAMP workflow diagram and equipment requirements. The workflow for conducting Saliva-Dry LAMP on (A) commercially-available instruments and (B) the Biobox.

Similar articles

Cited by

References

    1. Hu Z, et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci. China Life Sci. 2020;63:706–711. doi: 10.1007/s11427-020-1661-4. - DOI - PMC - PubMed
    1. Ivanov D. Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. Transp. Res. Part E Logist. Transp. Rev. 2020;136:101922. doi: 10.1016/j.tre.2020.101922. - DOI - PMC - PubMed
    1. Sarata AK. COVID-19 testing: Key issues. Congr. Res. Serv. 2020;2:1–3.
    1. Centres for Disease Control and Prevention. Real-time RT-PCR Primers and Probes for COVID-19 | CDC. cdc.gov (2020). Available at: https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.... (Accessed: 3rd November 2020)
    1. Corman VM, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25:2000045. - PMC - PubMed

Publication types

MeSH terms

Supplementary concepts