Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jul;27(4):1223-1233.
doi: 10.1007/s10741-021-10126-5. Epub 2021 Jun 29.

Diagnosis of cardiac sarcoidosis: a primer for non-imagers

Affiliations
Review

Diagnosis of cardiac sarcoidosis: a primer for non-imagers

Tanushree Agrawal et al. Heart Fail Rev. 2022 Jul.

Abstract

Sarcoidosis is a multisystem granulomatous disorder that can potentially involve any organ. Cardiac involvement in sarcoidosis has been reported in up to 25% of patients based on autopsy and imaging studies. The gold standard for diagnosing cardiac sarcoidosis is endomyocardial biopsy demonstrating non-caseating granulomas; however, this technique lacks sensitivity due to the patchy nature of myocardial involvement. This, along with the non-specific clinical presentation, renders the diagnosis of cardiac sarcoidosis extremely challenging. Difficulties in obtaining histopathologic diagnosis and the advances in imaging modalities have led to a paradigm shift toward non-invasive imaging in the diagnosis of cardiac sarcoidosis. Advances in cardiac imaging modalities have also allowed unprecedented insights into the prevalence and natural history of cardiac sarcoidosis. This review discusses the role of non-invasive imaging for diagnosis, risk stratification, and monitoring the response to therapies in cardiac sarcoidosis. Echocardiography remains the first-line modality due to widespread availability and affordability. Cardiac magnetic resonance imaging (CMR) can be used to study cardiac structure, function, and most importantly tissue characterization to detect inflammation and fibrosis. Fluoro-deoxy glucose positron emission tomography (FDG PET) is the gold standard for non-invasive detection of cardiac inflammation, and it offers the unique ability to assess response to therapeutic interventions. Hybrid imaging is a promising technique that allows us to combine the unique strengths of CMR and FDG PET. Understanding the advantages and disadvantages of each of these imaging modalities is crucial in order to tailor the diagnostic algorithm and utilize the most appropriate modality for each patient.

Keywords: Advanced cardiac imaging; Cardiac MRI; Cardiac PET; Cardiac sarcoidosis; Hybrid imaging.

PubMed Disclaimer

References

    1. James DG, Sharma OP (2002) From Hutchinson to now: a historical glimpse. Curr Opin Pulm Med 8(5):416–423. https://doi.org/10.1097/00063198-200209000-00013 - DOI - PubMed
    1. Iannuzzi MC, Rybicki BA (2007) Genetics of sarcoidosis: candidate genes and genome scans. Proc Am Thorac Soc 4(1):108–116. https://doi.org/10.1513/pats.200607-141JG - DOI - PubMed - PMC
    1. Newman LS, Rose CS, Bresnitz EA et al (2004) A case control etiologic study of sarcoidosis: environmental and occupational risk factors. Am J Respir Crit Care Med 170(12):1324–1330. https://doi.org/10.1164/rccm.200402-249OC - DOI - PubMed
    1. Naruse TK, Matsuzawa Y, Ota M et al (2000) HLA-DQB1*0601 is primarily associated with the susceptibility to cardiac sarcoidosis. Tissue Antigens 56(1):52–57. https://doi.org/10.1034/j.1399-0039.2000.560107.x
    1. Takashige N, Naruse TK, Matsumori A et al (1999) Genetic polymorphisms at the tumour necrosis factor loci (TNFA and TNFB) in cardiac sarcoidosis. Tissue Antigens 54(2):191–193. https://doi.org/10.1034/j.1399-0039.1999.540211.x - DOI - PubMed

Substances

LinkOut - more resources