Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Oct 4;14(10):1683-1698.
doi: 10.1016/j.molp.2021.06.023. Epub 2021 Jun 27.

A novel miR167a-OsARF6-OsAUX3 module regulates grain length and weight in rice

Affiliations
Free article

A novel miR167a-OsARF6-OsAUX3 module regulates grain length and weight in rice

Jiyue Qiao et al. Mol Plant. .
Free article

Abstract

Grain size is one of the most important factors that control rice yield, as it is associated with grain weight (GW). To date, dozens of rice genes that regulate grain size have been isolated; however, the regulatory mechanism underlying GW control is not fully understood. Here, the quantitative trait locus qGL5 for grain length (GL) and GW was identified in recombinant inbred lines of 9311 and Nipponbare (NPB) and fine mapped to a candidate gene, OsAUX3. Sequence variations between 9311 and NPB in the OsAUX3 promoter and loss of function of OsAUX3 led to higher GL and GW. RNA sequencing, gene expression quantification, dual-luciferase reporter assays, chromatin immunoprecipitation-quantitative PCR, and yeast one-hybrid assays demonstrated that OsARF6 is an upstream transcription factor regulating the expression of OsAUX3. OsARF6 binds directly to the auxin response elements of the OsAUX3 promoter, covering a single-nucleotide polymorphism site between 9311 and NPB/Dongjin/Hwayoung, and thereby controls GL by altering longitudinal expansion and auxin distribution/content in glume cells. Furthermore, we showed that miR167a positively regulate GL and GW by directing OsARF6 mRNA silencing. Taken together, our study reveals that a novel miR167a-OsARF6-OsAUX3 module regulates GL and GW in rice, providing a potential target for the improvement of rice yield.

Keywords: OsARF6; OsAUX3; grain length; grain weight; miR167a; rice.

PubMed Disclaimer

Publication types

LinkOut - more resources