Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug 26:125:110575.
doi: 10.1016/j.jbiomech.2021.110575. Epub 2021 Jun 19.

A multi-objective optimization of stent geometries

Affiliations

A multi-objective optimization of stent geometries

Ramtin Gharleghi et al. J Biomech. .

Abstract

Stents are scaffolding cardiovascular implants used to restore blood flow in narrowed arteries. However, the presence of the stent alters local blood flow and shear stresses on the surrounding arterial wall, which can cause adverse tissue responses and increase the risk of adverse outcomes. There is a need for optimization of stent designs for hemodynamic performance. We used multi-objective optimization to identify ideal combinations of design variables by assessing potential trade-offs based on common hemodynamic indices associated with clinical risk and mechanical performance of the stents. We studied seven design variables including strut cross-section, strut dimension, strut angle, cell alignment, cell height, connector type and connector arrangement. Optimization objectives were the percentage of vessel area exposed to adversely low time averaged WSS (TAWSS) and adversely high Wall Shear Stress (WSS) assessed using computational fluid dynamics modeling, as well as radial stiffness of the stent using FEA simulation. Two multi-objective optimization algorithms were used and compared to iteratively predict ideal designs. Out of 50 designs, three best designs with respect to each of the three objectives, and two designs in regard to overall performance were identified.

Keywords: Computational modeling; Stent design; Wall shear stress.

PubMed Disclaimer

Publication types

LinkOut - more resources