Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep 1:131:472-482.
doi: 10.1016/j.actbio.2021.06.040. Epub 2021 Jun 27.

Multifunctional antibody-conjugated coiled-coil protein nanoparticles for selective cell targeting

Affiliations
Free article

Multifunctional antibody-conjugated coiled-coil protein nanoparticles for selective cell targeting

Marcos Gil-Garcia et al. Acta Biomater. .
Free article

Abstract

Nanostructures decorated with antibodies (Abs) are applied in bioimaging and therapeutics. However, most covalent conjugation strategies affect Abs functionality. In this study, we aimed to create protein-based nanoparticles to which intact Abs can be attached through tight, specific, and noncovalent interactions. Initially considered waste products, bacterial inclusion bodies (IBs) have been used in biotechnology and biomedicine. However, the amyloid-like nature of IBs limits their functionality and raises safety concerns. To bypass these obstacles, we have recently developed highly functional α-helix-rich IBs exploiting the natural self-assembly capacity of coiled-coil domains. We used this approach to create spherical, submicrometric, biocompatible and fluorescent protein nanoparticles capable of capturing Abs with high affinity. We showed that these IBs can be exploited for Ab-directed cell targeting. Simultaneous decoration of the nanoparticles with two different Abs in a controllable ratio enabled the construction of a bispecific antibody mimic that redirected T lymphocytes specifically to cancer cells. Overall, we describe an easy and cost-effective strategy to produce multivalent, traceable protein nanostructures with the potential to be used for biomedical applications. STATEMENT OF SIGNIFICANCE: Functional inclusion bodies (IBs) are promising platforms for biomedical and biotechnological applications. These nanoparticles are usually sustained by amyloid-like interactions, which imposes some limitations on their use. In this work, we exploit the natural coiled-coil self-assembly properties to create highly functional, nonamyloid, and fluorescent IBs capable of capturing antibodies. These protein-based nanoparticles are successfully used to specifically and simultaneously target two unrelated cell types and bring them close together, becoming a technology with potential application in bioimaging and immunotherapy.

Keywords: Antibody; Cell targeting; Coiled-coil; Functional inclusion bodies; Protein nanoparticles.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no competing interests.

Similar articles

Cited by

Publication types

LinkOut - more resources