Signatures of Wigner crystal of electrons in a monolayer semiconductor
- PMID: 34194018
- DOI: 10.1038/s41586-021-03590-4
Signatures of Wigner crystal of electrons in a monolayer semiconductor
Abstract
When the Coulomb repulsion between electrons dominates over their kinetic energy, electrons in two-dimensional systems are predicted to spontaneously break continuous-translation symmetry and form a quantum crystal1. Efforts to observe2-12 this elusive state of matter, termed a Wigner crystal, in two-dimensional extended systems have primarily focused on conductivity measurements on electrons confined to a single Landau level at high magnetic fields. Here we use optical spectroscopy to demonstrate that electrons in a monolayer semiconductor with density lower than 3 × 1011 per centimetre squared form a Wigner crystal. The combination of a high electron effective mass and reduced dielectric screening enables us to observe electronic charge order even in the absence of a moiré potential or an external magnetic field. The interactions between a resonantly injected exciton and electrons arranged in a periodic lattice modify the exciton bandstructure so that an umklapp resonance arises in the optical reflection spectrum, heralding the presence of charge order13. Our findings demonstrate that charge-tunable transition metal dichalcogenide monolayers14 enable the investigation of previously uncharted territory for many-body physics where interaction energy dominates over kinetic energy.
References
-
- Wigner, E. On the interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934). - DOI
-
- Lozovik, Y. E. & Yudson, V. I. Crystallization of a two-dimensional electron gas in a magnetic field. J. Exp. Theor. Phys. Lett. 22, 11–12 (1975).
-
- Grimes, C. C. & Adams, G. Evidence for a liquid-to-crystal phase transition in a classical, two-dimensional sheet of electrons. Phys. Rev. Lett. 42, 795–798 (1979). - DOI
Publication types
LinkOut - more resources
Full Text Sources
