Topological Encoded Vector Beams for Monitoring Amyloid-Lipid Interactions in Microcavity
- PMID: 34194941
- PMCID: PMC8224421
- DOI: 10.1002/advs.202100096
Topological Encoded Vector Beams for Monitoring Amyloid-Lipid Interactions in Microcavity
Abstract
Lasers are the pillars of modern photonics and sensing. Recent advances in microlasers have demonstrated its extraordinary lasing characteristics suitable for biosensing. However, most lasers utilized lasing spectrum as a detection signal, which can hardly detect or characterize nanoscale structural changes in microcavity. Here the concept of amplified structured light-molecule interactions is introduced to monitor tiny bio-structural changes in a microcavity. Biomimetic liquid crystal droplets with self-assembled lipid monolayers are sandwiched in a Fabry-Pérot cavity, where subtle protein-lipid membrane interactions trigger the topological transformation of output vector beams. By exploiting Amyloid β (Aβ)-lipid membrane interactions as a proof-of-concept, it is demonstrated that vector laser beams can be viewed as a topology of complex laser modes and polarization states. The concept of topological-encoded laser barcodes is therefore developed to reveal dynamic changes of laser modes and Aβ-lipid interactions with different Aβ assembly structures. The findings demonstrate that the topology of vector beams represents significant features of intracavity nano-structural dynamics resulted from structured light-molecule interactions.
Keywords: amyloid‐lipid interaction; laser modes; liquid crystals; microcavity; topological structures; vector beams.
© 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




Similar articles
-
Topological liquid crystal superstructures as structured light lasers.Proc Natl Acad Sci U S A. 2021 Dec 7;118(49):e2110839118. doi: 10.1073/pnas.2110839118. Proc Natl Acad Sci U S A. 2021. PMID: 34853167 Free PMC article.
-
Self-Assembled Biophotonic Lasing Network Driven by Amyloid Fibrils in Microcavities.ACS Nano. 2021 Sep 28;15(9):15007-15016. doi: 10.1021/acsnano.1c05266. Epub 2021 Sep 17. ACS Nano. 2021. PMID: 34533023
-
DNA Self-Switchable Microlaser.ACS Nano. 2020 Nov 24;14(11):16122-16130. doi: 10.1021/acsnano.0c08219. Epub 2020 Nov 2. ACS Nano. 2020. PMID: 33135892
-
Nano-biophotonics: new tools for chemical nano-analytics.Curr Opin Chem Biol. 2008 Oct;12(5):497-504. doi: 10.1016/j.cbpa.2008.08.012. Curr Opin Chem Biol. 2008. PMID: 18786651 Free PMC article. Review.
-
Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications.Chem Soc Rev. 2014 May 21;43(10):3666-761. doi: 10.1039/c4cs00039k. Epub 2014 Mar 18. Chem Soc Rev. 2014. PMID: 24638858 Review.
Cited by
-
Liquid Crystal Droplet-Based Biosensors: Promising for Point-of-Care Testing.Biosensors (Basel). 2022 Sep 15;12(9):758. doi: 10.3390/bios12090758. Biosensors (Basel). 2022. PMID: 36140143 Free PMC article. Review.
-
Deformable microlaser force sensing.Light Sci Appl. 2024 Jun 5;13(1):129. doi: 10.1038/s41377-024-01471-9. Light Sci Appl. 2024. PMID: 38834554 Free PMC article.
-
Determination of Enantiomeric Excess by Optofluidic Microlaser near Exceptional Point.Adv Sci (Weinh). 2024 Feb;11(7):e2308362. doi: 10.1002/advs.202308362. Epub 2023 Dec 10. Adv Sci (Weinh). 2024. PMID: 38072636 Free PMC article.
-
Skyrmion engineering with origami.Sci Rep. 2024 Sep 17;14(1):21673. doi: 10.1038/s41598-024-71566-1. Sci Rep. 2024. PMID: 39289417 Free PMC article.
-
Monitoring Various Bioactivities at the Molecular, Cellular, Tissue, and Organism Levels via Biological Lasers.Sensors (Basel). 2022 Apr 20;22(9):3149. doi: 10.3390/s22093149. Sensors (Basel). 2022. PMID: 35590841 Free PMC article. Review.
References
-
- Armani D. K., Kippenberg T. J., Spillane S. M., Vahala K. J., Nature 2003, 421, 925. - PubMed
-
- Zhang X., Cao Q. T., Wang Z., Liu Y. X., Qiu C. W., Yang L., Gong Q., Xiao Y. F., Nat. Photonics 2019, 13, 21.
-
- Armani A. M., Kulkarni R. P., Fraser S. E., Flagan R. C., Vahala K. J., Science 2007, 317, 783. - PubMed
-
- Baaske M. D., Foreman M. R., Vollmer F., Nat. Nanotechnol. 2014, 9, 933. - PubMed
-
- Chen W., Özdemir Ş. K., Zhao G., Wiersig J., Yang L., Nature 2017, 548, 192. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources