Modulatory Effects of Caffeine and Pentoxifylline on Aromatic Antibiotics: A Role for Hetero-Complex Formation
- PMID: 34198510
- PMCID: PMC8231999
- DOI: 10.3390/molecules26123628
Modulatory Effects of Caffeine and Pentoxifylline on Aromatic Antibiotics: A Role for Hetero-Complex Formation
Abstract
Antimicrobial resistance is a major healthcare threat globally. Xanthines, including caffeine and pentoxifylline, are attractive candidates for drug repurposing, given their well-established safety and pharmacological profiles. This study aimed to analyze potential interactions between xanthines and aromatic antibiotics (i.e., tetracycline and ciprofloxacin), and their impact on antibiotic antibacterial activity. UV-vis spectroscopy, statistical-thermodynamical modeling, and isothermal titration calorimetry were used to quantitatively evaluate xanthine-antibiotic interactions. The antibacterial profiles of xanthines, and xanthine-antibiotic mixtures, towards important human pathogens Staphylococcus aureus, Enterococcus faecium, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, and Enterobacter cloacae were examined. Caffeine and pentoxifylline directly interact with ciprofloxacin and tetracycline, with neighborhood association constant values of 15.8-45.6 M-1 and enthalpy change values up to -4 kJ·M-1. Caffeine, used in mixtures with tested antibiotics, enhanced their antibacterial activity in most pathogens tested. However, antagonistic effects of caffeine were also observed, but only with ciprofloxacin toward Gram-positive pathogens. Xanthines interact with aromatic antibiotics at the molecular and in vitro antibacterial activity level. Given considerable exposure to caffeine and pentoxifylline, these interactions might be relevant for the effectiveness of antibacterial pharmacotherapy, and may help to identify optimal treatment regimens in the era of multidrug resistance.
Keywords: antibacterial agent; biological activity; caffeine; ciprofloxacin; natural compounds; tetracycline.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






References
-
- Cassini A., Högberg L.D., Plachouras D., Quattrocchi A., Hoxha A., Simonsen G.S., Colomb-Cotinat M., Kretzschmar M.E., Devleesschauwer B., Cecchini M., et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019;19:56–66. doi: 10.1016/S1473-3099(18)30605-4. - DOI - PMC - PubMed
-
- U.S. Department of Health and Human Services, Centres for Disease Control and Prevention Antibiotic Resistance Threats in the United States. [(accessed on 29 April 2021)];2019 Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-re....
-
- Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y., Song B., Gu X., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395:1054–1062. doi: 10.1016/S0140-6736(20)30566-3. - DOI - PMC - PubMed
-
- Yang X., Yu Y., Xu J., Shu H., Xia J., Liu H., Wu Y., Zhang L., Yu Z., Fang M., et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020;8:475–481. doi: 10.1016/S2213-2600(20)30079-5. - DOI - PMC - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources