Right Ventricle Remodeling Metabolic Signature in Experimental Pulmonary Hypertension Models of Chronic Hypoxia and Monocrotaline Exposure
- PMID: 34205639
- PMCID: PMC8235667
- DOI: 10.3390/cells10061559
Right Ventricle Remodeling Metabolic Signature in Experimental Pulmonary Hypertension Models of Chronic Hypoxia and Monocrotaline Exposure
Abstract
Introduction: Over time and despite optimal medical management of patients with pulmonary hypertension (PH), the right ventricle (RV) function deteriorates from an adaptive to maladaptive phenotype, leading to RV failure (RVF). Although RV function is well recognized as a prognostic factor of PH, no predictive factor of RVF episodes has been elucidated so far. We hypothesized that determining RV metabolic alterations could help to understand the mechanism link to the deterioration of RV function as well as help to identify new biomarkers of RV failure.
Methods: In the current study, we aimed to characterize the metabolic reprogramming associated with the RV remodeling phenotype during experimental PH induced by chronic-hypoxia-(CH) exposure or monocrotaline-(MCT) exposure in rats. Three weeks after PH initiation, we hemodynamically characterized PH (echocardiography and RV catheterization), and then we used an untargeted metabolomics approach based on liquid chromatography coupled to high-resolution mass spectrometry to analyze RV and LV tissues in addition to plasma samples from MCT-PH and CH-PH rat models.
Results: CH exposure induced adaptive RV phenotype as opposed to MCT exposure which induced maladaptive RV phenotype. We found that predominant alterations of arginine, pyrimidine, purine, and tryptophan metabolic pathways were detected on the heart (LV+RV) and plasma samples regardless of the PH model. Acetylspermidine, putrescine, guanidinoacetate RV biopsy levels, and cytosine, deoxycytidine, deoxyuridine, and plasmatic thymidine levels were correlated to RV function in the CH-PH model. It was less likely correlated in the MCT model. These pathways are well described to regulate cell proliferation, cell hypertrophy, and cardioprotection. These findings open novel research perspectives to find biomarkers for early detection of RV failure in PH.
Keywords: MCT; RV dysfunction; arginine; chronic-hypoxia; purine; tryptophan.
Conflict of interest statement
The sponsors had no role in the design, collection, analysis, or interpretation of data, the writing of this article, or the decision to submit it for publication. M.H. has relationships with drug companies, including Actelion, Bayer, GSK, Novartis, and Pfizer. In addition to being an investigator in trials involving these companies, other relationships include consultancy services and memberships to scientific advisory boards. O.M. and E.F. participate on MSD scientific advisory boards. Other authors declare no conflict of interest.
Figures





References
-
- Konstantinides S.V., Torbicki A., Agnelli G., Danchin N., Fitzmaurice D., Galiè N., Gibbs J.S.R., Huisman M.V., Humbert M., Kucher N., et al. 2014 ESC Guidelines on the diagnosis and management of acute pulmonary embolism: The Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC) Endorsed by the European Respiratory Society (ERS) Eur. Heart J. 2014;35:3033–3073. - PubMed
-
- Noordegraaf A.V., Chin K.M., Haddad F., Hassoun P.M., Hemnes A.R., Hopkins S.R., Kawut S.M., Langleben D., Lumens J., Naeije R. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: An update. Eur. Respir. J. 2019;53:1801900. doi: 10.1183/13993003.01900-2018. - DOI - PMC - PubMed
-
- Ghio S., Gavazzi A., Campana C., Inserra C., Klersy C., Sebastiani R., Arbustini E., Recusani F., Tavazzi L. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J. Am. Coll. Cardiol. 2001;37:183–188. doi: 10.1016/S0735-1097(00)01102-5. - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Medical