Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jun 22;8(7):532.
doi: 10.3390/children8070532.

Epilepsy in Mitochondrial Diseases-Current State of Knowledge on Aetiology and Treatment

Affiliations
Review

Epilepsy in Mitochondrial Diseases-Current State of Knowledge on Aetiology and Treatment

Dorota Wesół-Kucharska et al. Children (Basel). .

Abstract

Mitochondrial diseases are a heterogeneous group of diseases resulting from energy deficit and reduced adenosine triphosphate (ATP) production due to impaired oxidative phosphorylation. The manifestation of mitochondrial disease is usually multi-organ. Epilepsy is one of the most common manifestations of diseases resulting from mitochondrial dysfunction, especially in children. The onset of epilepsy is associated with poor prognosis, while its treatment is very challenging, which further adversely affects the course of these disorders. Fortunately, our knowledge of mitochondrial diseases is still growing, which gives hope for patients to improve their condition in the future. The paper presents the pathophysiology, clinical picture and treatment options for epilepsy in patients with mitochondrial disease.

Keywords: antiepileptic drugs (AED); epilepsy; mitochondrial disorders; mtDNA; nDNA; treatment.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Pathophysiology of epilepsy in mitochondrial diseases. (GABA: γ-aminobutyric acid, Na+/K+: sodium–potassium ATPase, ROS: reactive oxygen species).

References

    1. Rahman S. Pathophysiology of mitochondrial disease causing epilepsy and status epilepticus. Epilepsy Behav. 2015;49:71–75. doi: 10.1016/j.yebeh.2015.05.003. - DOI - PubMed
    1. Stenton S.L., Prokisch H. Genetics of mitochondrial diseases: Identifying mutations to help diagnosis. EBioMedicine. 2020;56:102784. doi: 10.1016/j.ebiom.2020.102784. - DOI - PMC - PubMed
    1. Tan J., Wagner M., Stenton S.L., Strom T.M., Wortmann S.B., Prokisch H., Meitinger T., Oexle K., Klopstock T. Lifetime risk of autosomal recessive mitochondrial disorders calculated from genetic databases. EBioMedicine. 2020;54:102730. doi: 10.1016/j.ebiom.2020.102730. - DOI - PMC - PubMed
    1. Davison J.E., Rahman S. Recognition, investigation and management of mitochondrial disease. Arch. Dis. Child. 2017;102:1082–1090. doi: 10.1136/archdischild-2016-311370. - DOI - PubMed
    1. Alston C.L., Rocha M.C., Lax N.Z., Turnbull D.M., Taylor R.W. The genetics and pathology of mitochondrial disease. J. Pathol. 2017;241:236–250. doi: 10.1002/path.4809. - DOI - PMC - PubMed

LinkOut - more resources