Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun 16;18(12):6497.
doi: 10.3390/ijerph18126497.

Serology in COVID-19: Comparison of Two Methods

Affiliations

Serology in COVID-19: Comparison of Two Methods

Anna Moniuszko-Malinowska et al. Int J Environ Res Public Health. .

Abstract

Background: The aim of our study was to examine the performance of two assays in detecting SARS-CoV-2 antibodies.

Methods: A total of 127 COVID-19 disease contacts from the Infectious Diseases Department were included. Two serological tests were used: SARS-CoV-2 IgG CMIA on the Alinity system (Abbott) and LIAISON® SARS-CoV-2 S1/S2 IgG CLIA (DiaSorin).

Results: The assays exhibited a 96.85% (123/127 patients) test result agreement. In two cases, the positive results obtained by SARS-CoV-2 IgG CMIA on the Alinity system (Abbott) were negative based on the LIAISON® SARS-CoV-2 S1/S2 IgG CLIA (DiaSorin) test, and in two cases, negative results from the LIAISON® SARS-CoV-2 S1/S2 IgG CLIA (DiaSorin) test were positive with the SARS-CoV-2 IgG CMIA on the Alinity system (Abbott).

Conclusions: Based on the results of our study, we conclude that in population medicine, the assessments of anti-SARS-CoV-2 antibodies after exposure to SARS-CoV-2 virus based on spike protein or nucleocapsid protein show comparable effectiveness.

Keywords: SARS-CoV-2; chemiluminescent immunoassay; nucleocapsid protein; serology; spike protein.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Krammer F., Simon V. Serology assays to manage COVID-19. Science. 2020;368:1060–1061. doi: 10.1126/science.abc1227. - DOI - PubMed
    1. Okba N.M.A., Müller M.A., Li W., Wang C., GeurtsvanKessel C.H., Corman V.M., Lamers M.M., Sikkema R.S., De Bruin E., Chandler F.D., et al. Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease Patients. Emerg. Infect. Dis. 2020;26:1478–1488. doi: 10.3201/eid2607.200841. - DOI - PMC - PubMed
    1. Stadlbauer D., Amanat F., Chromikova V., Jiang K., Strohmeier S., Arunkumar G.A., Tan J., Bhavsar D., Capuano C., Kirkpatrick E., et al. SARS-CoV-2 Seroconversion in humans: A Detailed Protocol for a Serological Assay, Antigen Production, and Test Setup. Curr. Protoc. Microbiol. 2020;57:e100. doi: 10.1002/cpmc.100. - DOI - PMC - PubMed
    1. Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181:281–2925. doi: 10.1016/j.cell.2020.02.058. - DOI - PMC - PubMed
    1. Burbelo P.D., Riedo F.X., Morishima C., Rawlings S., Smith D., Das S., Strich J.R., Chertow D.S., Davey R.T., Jr., Cohen J.I. Detection of nucleocapsid antibody to SARS-CoV-2 is nore sensitive than antibody to spike protein in COVID-19 patients. medRxiv. 2020 doi: 10.1101/2020.04.20.20071423. - DOI

Substances