Functional Implications of the Dynamic Regulation of EpCAM during Epithelial-to-Mesenchymal Transition
- PMID: 34209658
- PMCID: PMC8301972
- DOI: 10.3390/biom11070956
Functional Implications of the Dynamic Regulation of EpCAM during Epithelial-to-Mesenchymal Transition
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein expressed in epithelial tissues. EpCAM forms intercellular, homophilic adhesions, modulates epithelial junctional protein complex formation, and promotes epithelial tissue homeostasis. EpCAM is a target of molecular therapies and plays a prominent role in tumor biology. In this review, we focus on the dynamic regulation of EpCAM expression during epithelial-to-mesenchymal transition (EMT) and the functional implications of EpCAM expression on the regulation of EMT. EpCAM is frequently and highly expressed in epithelial cancers, while silenced in mesenchymal cancers. During EMT, EpCAM expression is downregulated by extracellular signal-regulated kinases (ERK) and EMT transcription factors, as well as by regulated intramembrane proteolysis (RIP). The functional impact of EpCAM expression on tumor biology is frequently dependent on the cancer type and predominant oncogenic signaling pathways, suggesting that the role of EpCAM in tumor biology and EMT is multifunctional. Membrane EpCAM is cleaved in cancers and its intracellular domain (EpICD) is transported into the nucleus and binds β-catenin, FHL2, and LEF1. This stimulates gene transcription that promotes growth, cancer stem cell properties, and EMT. EpCAM is also regulated by epidermal growth factor receptor (EGFR) signaling and the EpCAM ectoderm (EpEX) is an EGFR ligand that affects EMT. EpCAM is expressed on circulating tumor and cancer stem cells undergoing EMT and modulates metastases and cancer treatment responses. Future research exploring EpCAM's role in EMT may reveal additional therapeutic opportunities.
Keywords: cancer stem cells (CSCs); circulating tumor cells (CTCs); epithelial cancers; epithelial cell adhesion molecule (EpCAM); epithelial-to-mesenchymal transition (EMT); metastasis.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Momburg F., Moldenhauer G., Hämmerling G.J., Möller P. Immunohistochemical study of the expression of a Mr 34,000 human epithelium-specific surface glycoprotein in normal and malignant tissues. Cancer Res. 1987;47:2883–2891. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
