CD8+ T cells specific for conserved coronavirus epitopes correlate with milder disease in COVID-19 patients
- PMID: 34210785
- PMCID: PMC8975171
- DOI: 10.1126/sciimmunol.abg5669
CD8+ T cells specific for conserved coronavirus epitopes correlate with milder disease in COVID-19 patients
Abstract
A central feature of the SARS-CoV-2 pandemic is that some individuals become severely ill or die, whereas others have only a mild disease course or are asymptomatic. Here we report development of an improved multimeric αβ T cell staining reagent platform, with each maxi-ferritin "spheromer" displaying 12 peptide-MHC complexes. Spheromers stain specific T cells more efficiently than peptide-MHC tetramers and capture a broader portion of the sequence repertoire for a given peptide-MHC. Analyzing the response in unexposed individuals, we find that T cells recognizing peptides conserved amongst coronaviruses are more abundant and tend to have a "memory" phenotype, compared to those unique to SARS-CoV-2. Significantly, CD8+ T cells with these conserved specificities are much more abundant in COVID-19 patients with mild disease versus those with a more severe illness, suggesting a protective role.
Copyright © 2021, American Association for the Advancement of Science.
Figures








Similar articles
-
Limited Recognition of Highly Conserved Regions of SARS-CoV-2.Microbiol Spectr. 2022 Feb 23;10(1):e0278021. doi: 10.1128/spectrum.02780-21. Epub 2022 Feb 23. Microbiol Spectr. 2022. PMID: 35196796 Free PMC article.
-
Immunogenic T cell epitopes of SARS-CoV-2 are recognized by circulating memory and naïve CD8 T cells of unexposed individuals.EBioMedicine. 2021 Oct;72:103610. doi: 10.1016/j.ebiom.2021.103610. Epub 2021 Oct 6. EBioMedicine. 2021. PMID: 34627082 Free PMC article.
-
CD8+ T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope display high naive precursor frequency and TCR promiscuity.Immunity. 2021 May 11;54(5):1066-1082.e5. doi: 10.1016/j.immuni.2021.04.009. Epub 2021 Apr 15. Immunity. 2021. PMID: 33951417 Free PMC article.
-
Degenerate CD8 Epitopes Mapping to Structurally Constrained Regions of the Spike Protein: A T Cell-Based Way-Out From the SARS-CoV-2 Variants Storm.Front Immunol. 2021 Sep 8;12:730051. doi: 10.3389/fimmu.2021.730051. eCollection 2021. Front Immunol. 2021. PMID: 34566990 Free PMC article. Review.
-
SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19.Cell Host Microbe. 2021 Jul 14;29(7):1076-1092. doi: 10.1016/j.chom.2021.05.010. Epub 2021 May 21. Cell Host Microbe. 2021. PMID: 34237248 Free PMC article. Review.
Cited by
-
Major alterations to monocyte and dendritic cell subsets lasting more than 6 months after hospitalization for COVID-19.Front Immunol. 2023 Jan 4;13:1082912. doi: 10.3389/fimmu.2022.1082912. eCollection 2022. Front Immunol. 2023. PMID: 36685582 Free PMC article.
-
Breakthrough infections after COVID-19 vaccination: Insights, perspectives and challenges.Metabol Open. 2022 Mar 17;14:100180. doi: 10.1016/j.metop.2022.100180. eCollection 2022 Jun. Metabol Open. 2022. PMID: 35313532 Free PMC article.
-
SARS-CoV-2-specific T cells in unexposed adults display broad trafficking potential and cross-react with commensal antigens.bioRxiv [Preprint]. 2021 Nov 30:2021.11.29.470421. doi: 10.1101/2021.11.29.470421. bioRxiv. 2021. Update in: Sci Immunol. 2022 Oct 21;7(76):eabn3127. doi: 10.1126/sciimmunol.abn3127. PMID: 34873598 Free PMC article. Updated. Preprint.
-
Early protective effect of a ("pan") coronavirus vaccine (PanCoVac) in Roborovski dwarf hamsters after single-low dose intranasal administration.Front Immunol. 2023 Jul 13;14:1166765. doi: 10.3389/fimmu.2023.1166765. eCollection 2023. Front Immunol. 2023. PMID: 37520530 Free PMC article.
-
HLA-A∗02:01 restricted T cell receptors against the highly conserved SARS-CoV-2 polymerase cross-react with human coronaviruses.Cell Rep. 2021 Dec 28;37(13):110167. doi: 10.1016/j.celrep.2021.110167. Epub 2021 Dec 10. Cell Rep. 2021. PMID: 34919800 Free PMC article.
References
-
- Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020). - PMC - PubMed
-
- Krammer F., SARS-CoV-2 vaccines in development. Nature 586, 516–527 (2020). - PubMed
-
- Crawford K. H. D., Dingens A. S., Eguia R., Wolf C. R., Wilcox N., Logue J. K., Shuey K., Casto A. M., Fiala B., Wrenn S., Pettie D., King N. P., Greninger A. L., Chu H. Y., Bloom J. D., Dynamics of neutralizing antibody titers in the months after SARS-CoV-2 infection. J. Infect. Dis. jiaa618 (2020). - PMC - PubMed
-
- Seow J., Graham C., Merrick B., Acors S., Pickering S., Steel K. J. A., Hemmings O., O’Byrne A., Kouphou N., Galao R. P., Betancor G., Wilson H. D., Signell A. W., Winstone H., Kerridge C., Huettner I., Jimenez-Guardeño J. M., Lista M. J., Temperton N., Snell L. B., Bisnauthsing K., Moore A., Green A., Martinez L., Stokes B., Honey J., Izquierdo-Barras A., Arbane G., Patel A., Tan M. K. I., O’Connell L., O’Hara G., Mahon E. M., Douthwaite S., Nebbia G., Batra R., Martinez-Nunez R., Shankar-Hari M., Edgeworth J. D., Neil S. J. D., Malim M. H., Doores K. J., Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat. Microbiol. 5, 1598–1607 (2020). - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous