Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Nov;17(11):765-781.
doi: 10.1038/s41581-021-00447-x. Epub 2021 Jul 1.

Aquaporin 2 regulation: implications for water balance and polycystic kidney diseases

Affiliations
Review

Aquaporin 2 regulation: implications for water balance and polycystic kidney diseases

Emma T B Olesen et al. Nat Rev Nephrol. 2021 Nov.

Abstract

Targeting the collecting duct water channel aquaporin 2 (AQP2) to the plasma membrane is essential for the maintenance of mammalian water homeostasis. The vasopressin V2 receptor (V2R), which is a GS protein-coupled receptor that increases intracellular cAMP levels, has a major role in this targeting process. Although a rise in cAMP levels and activation of protein kinase A are involved in facilitating the actions of V2R, studies in knockout mice and cell models have suggested that cAMP signalling pathways are not an absolute requirement for V2R-mediated AQP2 trafficking to the plasma membrane. In addition, although AQP2 phosphorylation is a known prerequisite for V2R-mediated plasma membrane targeting, none of the known AQP2 phosphorylation events appears to be rate-limiting in this process, which suggests the involvement of other factors; cytoskeletal remodelling has also been implicated. Notably, several regulatory processes and signalling pathways involved in AQP2 trafficking also have a role in the pathophysiology of autosomal dominant polycystic kidney disease, although the role of AQP2 in cyst progression is unknown. Here, we highlight advances in the field of AQP2 regulation that might be exploited for the treatment of water balance disorders and provide a rationale for targeting these pathways in autosomal dominant polycystic kidney disease.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nawata, C. M. & Pannabecker, T. L. Mammalian urine concentration: a review of renal medullary architecture and membrane transporters. J. Comp. Physiol. B 188, 899–918 (2018). - PubMed - PMC - DOI
    1. Sohara, E., Rai, T., Sasaki, S. & Uchida, S. Physiological roles of AQP7 in the kidney: lessons from AQP7 knockout mice. Biochim. Biophys. Acta 1758, 1106–1110 (2006). - PubMed - DOI
    1. Fenton, R. A. & Knepper, M. A. Mouse models and the urinary concentrating mechanism in the new millennium. Physiol. Rev. 87, 1083–1112 (2007). - PubMed - DOI
    1. Kortenoeven, M. L. & Fenton, R. A. Renal aquaporins and water balance disorders. Biochim. Biophys. Acta 1840, 1533–1549 (2014). - PubMed - DOI
    1. Cheung, P. W., Bouley, R. & Brown, D. Targeting the trafficking of kidney water channels for therapeutic benefit. Annu. Rev. Pharmacol. Toxicol. 60, 175–194 (2020). - PubMed - DOI

Publication types

MeSH terms

LinkOut - more resources