Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov 10:794:148627.
doi: 10.1016/j.scitotenv.2021.148627. Epub 2021 Jun 24.

Effects of temperature and microorganism densities on disinfection by-product formation

Affiliations

Effects of temperature and microorganism densities on disinfection by-product formation

Jing-Syuan Zeng et al. Sci Total Environ. .

Abstract

This study investigated the role of microorganisms on the correlation between temperature changes and disinfection by-product formation in natural waters. Climate changes have resulted in an increase in the global surface temperature. Studies have revealed that increases in temperature may change the composition of dissolved organic matter (DOM), which may contain major disinfection by-product (DBP) precursors. This change in the DOM composition may affect DBP formation after conventional water treatment processes. Understanding the role of microorganisms in DOM composition as well as DBP formation and speciation is critical for controlling DBP formation. In this study, laboratory stimulatory experiments were conducted on water samples from various sources, at various temperatures, and with various microbial concentrations. The results revealed a decreasing trend of dissolved organic carbon (DOC), trihalomethane formation potential (THMFP), and haloacetic acid formation potential (HAAFP) at high temperature incubations irrespective of microbial concentrates. This result may be attributed to the fact that microorganism activities or concentrations in water increase at higher temperatures, which may result in higher DOC consumption and lower DBP formation. Water samples spiked with bacteria concentrates exhibited higher THMFP or HAAFP reduction than did samples without bacteria concentrates. A higher biomass in water may contribute to a higher consumption of DOC and consequently lower DBP formation potentials, especially at high incubation temperatures.

Keywords: Climate change; Disinfection by-products; Laboratory simulation; Microorganisms; Temperature; Water quality.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources