Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1988 Jan;85(1):237-41.
doi: 10.1073/pnas.85.1.237.

Accelerated autoxidation and heme loss due to instability of sickle hemoglobin

Affiliations
Comparative Study

Accelerated autoxidation and heme loss due to instability of sickle hemoglobin

R P Hebbel et al. Proc Natl Acad Sci U S A. 1988 Jan.

Abstract

The pleiotropic effect of the sickle gene suggests that factors in addition to polymerization of the mutant gene product might be involved in sickle disease pathobiology. We have examined rates of heme transfer to hemopexin from hemoglobin in dilute aqueous solution (0.5 mg of Hb per ml) at 37 degrees C. HbO2 S loses heme 1.7 times faster than HbO2 A, with apparent rate constants of 0.024 hr-1 and 0.014 hr-1, respectively. In contrast, Hb A and Hb S behave identically in their MetHb forms (very rapid heme loss) and their HbCO forms (zero heme loss). This indicates that the faster heme loss from HbO2 S is due to accelerated autoxidation (HbO2----MetHb) rather than to some other type of instability inherent in the relationship of sickle heme to its pocket in globin. This interpretation is supported by spectrophotometric measurement of initial rates of MetHb formation during incubation at 37 degrees C. This directly shows 1.7 times faster autoxidation, with apparent rate constants of 0.050 hr-1 for HbO2 S and 0.029 hr-1 for HbO2 A. While the participation of this process in the cellular pathobiology of sickle erythrocytes remains unproven, the present data are consistent with, and perhaps help explain, two prior observations: the excessive spontaneous generation of superoxide by sickle erythrocytes; and the abnormal deposition of heme and heme proteins on membranes of sickle erythrocytes.

PubMed Disclaimer

References

    1. J Biol Chem. 1968 Feb 10;243(3):465-75 - PubMed
    1. Blood. 1956 Apr;11(4):380-3 - PubMed
    1. Proc Soc Exp Biol Med. 1968 Jul;128(3):734-7 - PubMed
    1. Biochemistry. 1971 May 11;10(10):1746-50 - PubMed
    1. Biochemistry. 1973 Nov 20;12(24):4946-9 - PubMed

Publication types

LinkOut - more resources