Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021;21(20):1832-1868.
doi: 10.2174/1568026621666210705170510.

Drug-lead Anti-tuberculosis Phytochemicals: A Systematic Review

Affiliations

Drug-lead Anti-tuberculosis Phytochemicals: A Systematic Review

Shasank S Swain et al. Curr Top Med Chem. 2021.

Abstract

Background: Today, the occurrence and recurrence of multidrug-resistant tuberculosis strains and comorbidities are the main reasons for long-term morbidity and mortality from tuberculosis from the nasty acid-fast pathogen Mycobacterium tuberculosis. Therefore, discovering and developing well-tolerated and non-toxic antituberculosis regimens are directly needed to defend the variants strains of M. tuberculosis and, alternatively, support WHO's 'END-TB' campaign.

Objective: Alternatively, phytochemicals from various common and medicinal plants have always been vital therapeutic agents since the primitive era. Thus, proper scientific documentation as diversity, potency, structure, drug-chemistry and overall critical analysis are essential tools to accelerate the phytochemical-based anti-TB drug development.

Methods: In the present review, we have used some specific keywords such as 'antituberculosis phytochemicals', &; antituberculosis phytochemicals from plant source&; 'natural products against tuberculosis' in Google, PubMed, ScienceDirect sites to get more appropriate research publications. Further, based on lower minimum inhibitory concentration within fifty μ g/mL, a total of twohundred- twenty-one bioactive anti-TB phytochemicals were selected for critical drug-chemistry and structural activity relationship analyses to select most potential 'lead candidate' for anti-TB drug development.

Results: Based on lower concentration, abietane, ethyl-p-methoxycinnamate, ergosterol peroxide, mono-O-methyl curcumin isoxazole, 7-methyljuglone, 12-demethylmulticaulin, 12-methyl-5- dehydroacetylhorminone, tryptanthrin, etc. are some of the potential anti-TB phytochemicals. Interestingly, existing and clinical drug pipelines for TB contain several active phytochemical pharmacophores illustrated from the structural analysis.

Conclusion: Therefore, updated experimental documentation and structural-cum-critical drugchemistry analysis on isolated antituberculosis phytochemicals at the primary level are more beneficial for drug developers, R&D centres, and pharmaceutical companies to accelerate anti-TB drug development using phytochemicals.

Keywords: Alkaloid phytochemicals.; Anti-TB drug development; Clinical drug pipeline for TB; Exclusive anti-TB phytochemicals; Multidrug-resistant tuberculosis; Structural activity relationship.

PubMed Disclaimer

Publication types

MeSH terms