In Vitro Antifungal Resistance of Candida auris Isolates from Bloodstream Infections, South Africa
- PMID: 34228535
- PMCID: PMC8370198
- DOI: 10.1128/AAC.00517-21
In Vitro Antifungal Resistance of Candida auris Isolates from Bloodstream Infections, South Africa
Abstract
Candida auris is a multidrug-resistant fungal pathogen that is endemic in South African hospitals. We tested bloodstream C. auris isolates that were submitted to a reference laboratory for national laboratory-based surveillance for candidemia in 2016 and 2017. We confirmed the species identification by phenotypic/molecular methods. We tested susceptibility to amphotericin B, anidulafungin, caspofungin, micafungin, itraconazole, posaconazole, voriconazole, fluconazole, and flucytosine using broth microdilution and Etest methods. We interpreted MICs using tentative breakpoints. We sequenced the genomes of a subset of isolates and compared them to the C. auris B8441 reference strain. Of 400 C. auris isolates, 361 (90%) were resistant to at least one antifungal agent, 339 (94%) to fluconazole alone (MICs of ≥32 µg/ml), 19 (6%) to fluconazole and amphotericin B (MICs of ≥2 µg/ml), and 1 (0.3%) to amphotericin B alone. Two (0.5%) isolates from a single patient were pan-resistant (resistant to fluconazole, amphotericin B, and echinocandins). Of 92 isolates selected for whole-genome sequencing, 77 clustered in clade III, including the pan-resistant isolates, 13 in clade I, and 2 in clade IV. Eighty-four of the isolates (91%) were resistant to at least one antifungal agent; both resistant and susceptible isolates had mutations. The common substitutions identified across the different clades were VF125AL, Y132F, K177R, N335S, and E343D in ERG11; N647T in MRR1; A651P, A657V, and S195G in TAC1b; S639P in FKS1HP1; and S58T in ERG3. Most South African C. auris isolates were resistant to azoles, although resistance to polyenes and echinocandins was less common. We observed mutations in resistance genes even in phenotypically susceptible isolates.
Keywords: Candida auris; antifungal resistance; candidemia; multidrug resistant; pan-drug resistant.
Figures
References
-
- Chowdhary A, Prakash A, Sharma C, Kordalewska M, Kumar A, Sarma S, Tarai B, Singh A, Upadhyaya G, Upadhyay S, Yadav P, Singh PK, Khillan V, Sachdeva N, Perlin DS, Meis JF. 2018. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009–17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J Antimicrob Chemother 73:891–899. 10.1093/jac/dkx480. - DOI - PubMed
-
- Van Schalkwyk E, Mpembe RS, Thomas J, Shuping L, Ismail H, Lowman W, Karstaedt AS, Chibabhai V, Wadula J, Avenant T, Messina A, Govind CN, Moodley K, Dawood H, Ramjathan P, Govender NP. 2019. Epidemiologic shift in candidemia driven by Candida auris, South Africa, 2016–2017. Emerg Infect Dis 25:1698–1707. 10.3201/eid2509.190040. - DOI - PMC - PubMed
-
- Arendrup MC, Prakash A, Meletiadis J, Sharma C, Chowdhary A. 2017. Comparison of EUCAST and CLSI reference microdilution MICs of eight antifungal compounds for Candida auris and associated tentative epidemiological cutoff values. Antimicrob Agents Chemother 61:e00485-27. 10.1128/AAC.00485-17. - DOI - PMC - PubMed
-
- Centers for Disease Control and Prevention. 2020. Antifungal susceptibility testing and interpretation. https://www.cdc.gov/fungal/candida-auris/c-auris-antifungal.html. Accessed 14 December 2020.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
