Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jul 20;37(28):8426-8434.
doi: 10.1021/acs.langmuir.1c00670. Epub 2021 Jul 7.

CuCo2O4 Hollow Microspheres with Graphene Composite Targeting Superior Lithium-Ion Storage

Affiliations

CuCo2O4 Hollow Microspheres with Graphene Composite Targeting Superior Lithium-Ion Storage

Zongdeng Wu et al. Langmuir. .

Abstract

CuCo2O4, a type of promising lithium-ion storage material, exhibits high electrochemical properties in lithium-ion batteries and enormous economic benefits. However, its practical application is limited by problems such as structural collapse and electrochemical stability during the charging and discharging process. In this work, the reduced graphene oxide (rGO)-coated CuCo2O4 (CuCo2O4/rGO) hollow microspheres were successfully prepared by electrostatic self-assembly. The CuCo2O4/rGO electrode shows an outstanding capability for lithium-ion storage and a remarkable rate capacity, e.g., 445 mA h g-1 at 5 A g-1. After 150 cycles at 0.1 A g-1, the reversible capacity of the CuCo2O4/rGO electrode is as high as 1080 mA h g-1, and it can still retain about 530 mA h g-1 in the 400th cycle at 1 A g-1. The hollow microspheres with mesoporous shells can cause electrolyte penetration into the spherical shell to effectively shorten the transfer distance of lithium ions, and the encapsulation of graphene improves the conductivity and stability of CuCo2O4, which endows CuCo2O4/rGO with a wonderful Li+ storage performance. It is proved that this is an efficient method to improve the electrochemical performance of metal compounds for better applications in energy storage.

PubMed Disclaimer

Similar articles

LinkOut - more resources