Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep 7;73(10):1340-1350.
doi: 10.1093/jpp/rgab087.

Dose individualization of intravenous busulfan in pediatric patients undergoing bone marrow transplantation: impact and in vitro evaluation of infusion lag-time

Affiliations

Dose individualization of intravenous busulfan in pediatric patients undergoing bone marrow transplantation: impact and in vitro evaluation of infusion lag-time

E Neroutsos et al. J Pharm Pharmacol. .

Abstract

Objectives: To apply therapeutic drug monitoring and dose-individualization of intravenous Busulfan to paediatric patients and evaluate the impact of syringe-pump induced Busulfan infusion lag-time after in vitro estimation.

Methods: 76 children and adolescents were administered 2 h intravenous Busulfan infusion every 6 h (16 doses). Busulfan plasma levels, withdrawn by an optimized sampling scheme and measured by a validated HPLC-PDA method, were used to estimate basic PK parameters, AUC, Cmax, kel, t1/2, applying Non-Compartmental Analysis. In vivo infusion lag-time was simulated in vitro and used to evaluate its impact on AUC estimation.

Key findings: Mean (%CV) Busulfan AUC, Cmax, clearance and t1/2 for pediatric population were found 962.3 μm × min (33.1), 0.95 mg/L (41.4), 0.27 L/h/kg (33.3), 2.2 h (27.8), respectively. TDM applied to 76 children revealed 6 (7.9%) being above and 25 (32.9%) below therapeutic-range (AUC: 900-1350 μm × min). After dose correction, all patients were measured below toxic levels (AUC < 1500 μm × min), no patient below 900 μm × min. Incorporation of infusion lag-time revealed lower AUCs with 17.1% more patients and 23.1% more younger patients, with body weight <16 kg, being below the therapeutic-range.

Conclusions: TDM, applied successfully to 76 children, confirmed the need for Busulfan dose-individualization in paediatric patients. Infusion lag-time was proved clinically significant for younger, low body-weight patients and those close to the lower therapeutic-range limit.

Keywords: busulfan; infusion lag-time; pediatric population; pharmacokinetics; precision dosing; therapeutic drug monitoring.

PubMed Disclaimer

MeSH terms