Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021:267:1-49.
doi: 10.1007/164_2021_460.

Comparison of K+ Channel Families

Affiliations

Comparison of K+ Channel Families

Jaume Taura et al. Handb Exp Pharmacol. 2021.

Abstract

K+ channels enable potassium to flow across the membrane with great selectivity. There are four K+ channel families: voltage-gated K (Kv), calcium-activated (KCa), inwardly rectifying K (Kir), and two-pore domain potassium (K2P) channels. All four K+ channels are formed by subunits assembling into a classic tetrameric (4x1P = 4P for the Kv, KCa, and Kir channels) or tetramer-like (2x2P = 4P for the K2P channels) architecture. These subunits can either be the same (homomers) or different (heteromers), conferring great diversity to these channels. They share a highly conserved selectivity filter within the pore but show different gating mechanisms adapted for their function. K+ channels play essential roles in controlling neuronal excitability by shaping action potentials, influencing the resting membrane potential, and responding to diverse physicochemical stimuli, such as a voltage change (Kv), intracellular calcium oscillations (KCa), cellular mediators (Kir), or temperature (K2P).

Keywords: Calcium-activated; Conductivity; Gating; Inwardly rectifying K; Ion channel; Potassium channel; Selectivity; Two-pore domain potassium; Voltage-gated K.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Abbott GW, Butler MH, Bendahhou S, Dalakas MC, Ptacek LJ, Goldstein SAN (2001) MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Cell 104:217–231 - PubMed
    1. Abbott GW, Butler MH, Goldstein SAN (2006) Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis. FASEB J 20:293–301 - PubMed
    1. Adelman JP (2016) SK channels and calmodulin. Channels (Austin) 10:1–6
    1. Adelman JP, Maylie J, Sah P (2012) Small-conductance Ca2+−activated K+ channels: form and function. Annu Rev Physiol 74:245–269 - PubMed
    1. A-González N, Castrillo A (2011) Liver X receptors as regulators of macrophage inflammatory and metabolic pathways. Biochim Biophys Acta (BBA) Mol Basis Dis 1812:982–994

LinkOut - more resources