Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun 23;6(26):17103-17112.
doi: 10.1021/acsomega.1c02502. eCollection 2021 Jul 6.

Novel Stereoselective Syntheses of (+)-Streptol and (-)-1 -epi-Streptol Starting from Naturally Abundant (-)-Shikimic Acid

Affiliations

Novel Stereoselective Syntheses of (+)-Streptol and (-)-1 -epi-Streptol Starting from Naturally Abundant (-)-Shikimic Acid

Xing-Liang Zhu et al. ACS Omega. .

Abstract

Novel highly stereoselective syntheses of (+)-streptol and (-)-1-epi-streptol starting from naturally abundant (-)-shikimic acid were described in this article. (-)-Shikimic acid was first converted to the common key intermediate by 11 steps in 40% yield. It was then converted to (+)-streptol by three steps in 72% yield, and it was also converted to (-)-1-epi-streptol by one step in 90% yield. In summary, (+)-streptol and (-)-1-epi-streptol were synthesized from (-)-shikimic acid by 14 and 12 steps in 29 and 36% overall yields, respectively.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Three related compounds.
Scheme 1
Scheme 1. Total Syntheses of (+)-Streptol 1 and (−)-1-epi-Streptol 2 Starting from (−)-Shikimic Acid
Figure 2
Figure 2
1H–1H COSY and 1H–1H NOESY spectra of 9.
Figure 3
Figure 3
Chemoselective reduction of 9 with NaBH4.

References

    1. Shui F.; Jia J.; Yang X.; Zhou Q.; Jiang Y.; Chen X. Synthesis of (+)-epoxydon, (−)-phyllostine, (−)-RKTS 33, and (−)-parasitenone featuring selective sulfonylation and oxirane ring closure of Aldol cyclization products. Eur. J. Org. Chem. 2020, 3981–3988. 10.1002/ejoc.202000486. - DOI
    2. Osborn A. R.; Kean K. M.; Alseud K. M.; Almabruk K. H.; Asamiza S.; Lee J. A.; Karplus P. A.; Mahmus T. Evolution and distribution of C7–cyclitol synthases in prokaryotes and eukaryotes. ACS Chem. Biol. 2017, 12, 979–988. 10.1021/acschembio.7b00066. - DOI - PMC - PubMed
    3. Mondal S.; Sureshan K. M. Carbasugar synthesis via vinylogous ketal: total syntheses of (+)-MK7607, (−)-MK7607, (−)-Gabosine A, (−)-Epoxydine B, (−)-Epoxydine C, epi-(+)-Gabosine E and epi-(+)-MK7607. J. Org. Chem. 2016, 81, 11635–11645. 10.1021/acs.joc.6b01876. - DOI - PubMed
    4. Trapero A.; Egido-Gabas M.; Bujons J.; Llebaria A. Synthesis and evaluation of hydroxymethylaminocyclitols as glycosidase inhibitors. J. Org. Chem. 2015, 80, 3512–3529. 10.1021/acs.joc.5b00133. - DOI - PubMed
    5. Vidyasagar A.; Sureshan K. M. Total syntheses of five uvacalols: structural validation of uvacalol A, uvacalol B and uvacalol C and disproval of the structures of uvacalol E and uvacalol G. Org. Biomol. Chem. 2015, 13, 3900–3910. 10.1039/C4OB02663B. - DOI - PubMed
    6. Usami Y.; Mizuki K. Stereostructure reassignment and determination of the absolute configuration of pericosine Do by a synthetic approach. J. Nat. Prod. 2011, 74, 877–881. 10.1021/np100843j. - DOI - PubMed
    7. Choi W. S.; Xiumei W. X.; Choeng Y. H.; Mahmud T.; Jeong B. C.; Lee S. H.; Chang Y. K.; Kim C-J.; Soon-Kwang Hong S.-K. Genetic organization of the putative salbostatin biosynthetic gene cluster including the 2-epi-5-epi-valiolone synthase gene in Streptomyces albus ATCC 21838. Appl. Microbiol. Biotechnol. 2008, 80, 637–645. 10.1007/s00253-008-1591-2. - DOI - PubMed
    8. Delgado A. Recent advances in the chemistry of aminocyclitols. Eur. J. Org. Chem. 2008, 3893–3906. 10.1002/ejoc.200800238. - DOI
    9. Arjona O.; Gómez A. M.; López J. C.; Plumet J. Synthesis and conformational and biological aspects of carbasugars. Chem. Rev. 2007, 107, 1919–2036. 10.1021/cr0203701. - DOI - PubMed
    10. Mahmud T. The C7N aminocyclitol family of natural products. Nat. Prod. Rep. 2003, 20, 137–166. 10.1039/b205561a. - DOI - PubMed
    11. Naganawa H.; Hashizume H.; Kubota Y.; Sawa R.; Takahashi Y.; et al. Biosynthesis of the cyclitol moiety of pyralomicin 1a in Nonomuraea spiralis MI178-34F18. J. Antibiot. 2002, 55, 578–584. 10.7164/antibiotics.55.578. - DOI - PubMed
    12. Marco-Contelles J. Cyclohexane epoxides −chemistry and biochemistry of (+)-cyclophellitol. Eur. J. Org. Chem. 2001, 1607–1618. 10.1002/1099-0690(200105)2001:9<1607::AID-EJOC1607>3.0.CO;2-6. - DOI
    1. Isogai A.; Sakuda S.; Nakayama J.; Watanabe S.; Suzuki A. Isolation and structural elucidation of a new cyclitol derivative, streptol, as a plant growth regulator. Agric. Biol. Chem. 1987, 51, 2277–2279. 10.1080/00021369.1987.10868342. - DOI
    2. Kizuka M.; Enokita R.; Shibata K.; Okamoto Y.; Inoue Y.; Okazaki T. Studies on actinomycetes isolated from plant leaves. New plant growth inhibitors A-79197-2 and -3 from Dacthylosporangium aurantiacum SANK 61299. Actinomycetologica 2002, 16, 14–16. 10.3209/saj.16_14. - DOI
    3. Sedmera P.; Halada P.; Pospísil S. New carbasugars from Streptomyces lincolnensis. Magn. Reson. Chem. 2009, 47, 519–522. 10.1002/mrc.2408. - DOI - PubMed
    1. Hsiao C.-C.; Sieber S.; Georgiou A.; Bailly A.; Emmanouilidou D.; Carlier A.; Eberl L.; Gademann K. Synthesis and biological evaluation of the novel growth inhibitor streptol glucoside, isolated from an obligate plant symbiont. Chem. – Eur. J. 2019, 25, 1722–1726. 10.1002/chem.201805693. - DOI - PubMed
    2. Iwu M.; Okunji C.; Tchimene M.; Anele N.; Chah K.; Osonwa U.; Akpa P. A.; Onunkwo G. C. Stability of cough linctus (streptol) formulated from named medicinal plant extracts. Chem. Pharm. Bull. 2009, 57, 229–232. 10.1248/cpb.57.229. - DOI - PubMed
    1. Shing T. K. M.; Wu H. T.; Kwok H. F.; Lau C. B. S. Synthesis of chiral hydroxylated enones as potential anti-tumor agents. Bioorg. Med. Chem. Lett. 2012, 22, 7562–7565. 10.1016/j.bmcl.2012.10.026. - DOI - PubMed
    1. Zhang C.-S.; Stratmann A.; Block O.; Bruckner R.; Podeschwa M.; Altenbach H.-J.; Wehmeier U. F.; Piepersberg W. Biosynthesis of the C7-cyclitol moiety of acarbose in Actinoplanes species SE50/110. 7-O-Phosphorylation of the initial cyclitol precursor leads to proposal of a new biosynthetic pathway. J. Biol. Chem. 2002, 277, 22853–22862. 10.1074/jbc.M202375200. - DOI - PubMed
    2. Wehmeier U. F. The biosynthesis and metabolism of acarbose in Actinoplanes sp. SE 50/110: A progress report. Biocatal. Biotransform. 2003, 21, 279–284. 10.1080/10242420310001614388. - DOI
    3. Zhang C.-S.; Podeschwa M.; Block O.; Altenbach H.-J.; Piepersberg W.; Wehmeier U. F. Identification of a 1-epi-valienol 7-kinase activity in the producer of acarbose, Actinoplanes sp. SE50/110. FEBS Lett. 2003, 540, 53–57. 10.1016/S0014-5793(03)00222-9. - DOI - PubMed