Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021:362:111-140.
doi: 10.1016/bs.ircmb.2021.05.003. Epub 2021 Jun 21.

Mitochondrial calcium homeostasis in hematopoietic stem cell: Molecular regulation of quiescence, function, and differentiation

Affiliations
Review

Mitochondrial calcium homeostasis in hematopoietic stem cell: Molecular regulation of quiescence, function, and differentiation

Massimo Bonora et al. Int Rev Cell Mol Biol. 2021.

Abstract

Hematopoiesis is based on the existence of hematopoietic stem cells (HSC) with the capacity to self-proliferate and self-renew or to differentiate into specialized cells. The hematopoietic niche is the essential microenvironment where stem cells reside and integrate various stimuli to determine their fate. Recent studies have identified niche containing high level of calcium (Ca2+) suggesting that HSCs are sensitive to Ca2+. This is a highly versatile and ubiquitous second messenger that regulates a wide variety of cellular functions. Advanced methods for measuring its concentrations, genetic experiments, cell fate tracing data, single-cell imaging, and transcriptomics studies provide information into its specific roles to integrate signaling into an array of mechanisms that determine HSC identity, lineage potential, maintenance, and self-renewal. Accumulating and contrasting evidence, are revealing Ca2+ as a previously unacknowledged feature of HSC, involved in functional maintenance, by regulating multiple actors including transcription and epigenetic factors, Ca2+-dependent kinases and mitochondrial physiology. Mitochondria are significant participants in HSC functions and their responsiveness to cellular demands is controlled to a significant extent via Ca2+ signals. Recent reports indicate that mitochondrial Ca2+ uptake also controls HSC fate. These observations reveal a physiological feature of hematopoietic stem cells that can be harnessed to improve HSC-related disease. In this review, we discuss the current knowledge Ca2+ in hematopoietic stem cell focusing on its potential involvement in proliferation, self-renewal and maintenance of HSC and discuss future research directions.

Keywords: AML; Ca(2+); Hematopoietic stem cell; MDS; Mitochondria; Preleukemia; Self-renewal.

PubMed Disclaimer

Conflict of interest statement

Conflicts of interest The authors declare no conflict of interest.

Publication types

LinkOut - more resources