Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 5;12(25):8706-8712.
doi: 10.1039/d1sc01127h. eCollection 2021 Jul 1.

Catalytic (3 + 2) annulation of donor-acceptor aminocyclopropane monoesters and indoles

Affiliations

Catalytic (3 + 2) annulation of donor-acceptor aminocyclopropane monoesters and indoles

Vincent Pirenne et al. Chem Sci. .

Abstract

The efficient catalytic activation of donor-acceptor aminocyclopropanes lacking the commonly used diester acceptor is reported here in a (3 + 2) dearomative annulation with indoles. Bench-stable tosyl-protected aminocyclopropyl esters were converted into cycloadducts in 46-95% yields and up to 95 : 5 diastereomeric ratio using catalytic amounts of triethylsilyl triflimide. Tricyclic indoline frameworks containing four stereogenic centers including all-carbon quaternary centers were obtained.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. D–A cyclopropanes with one or two acceptor groups in annulation reactions.
Scheme 2
Scheme 2. Annulations of D–A cyclopropanes and indoles.
Scheme 3
Scheme 3. Screening of several push–pull systems for the TMS triflimide-catalyzed (3 + 2) annulation of aminocyclopropanes 1a–f with 1-methylindole (2a).
Scheme 4
Scheme 4. Scope of the catalytic (3 + 2) annulation of tosyl-protected aminocyclopropane 1 with indoles 2 (reaction on 0.1 to 0.3 mmol scale, yields are given for the mixture of both isomers). aReaction performed at room temperature.
Scheme 5
Scheme 5. Scale up experiments and product modifications. Reaction conditions: (a) DIBALH, THF, 0 °C; (b) Li/naphthalene, THF, rt; (c) TBAF, THF, 0 °C.
Scheme 6
Scheme 6. Influence of the absolute and relative configuration of the starting aminocyclopropane 1d on the (3 + 2) annulation with 1-methylindole (2a) (a); speculative mechanism proposal (b).

References

    1. Selected reviews:

    2. Reissig H.-U. Zimmer R. Chem. Rev. 2003;103:1151–1196. - PubMed
    3. Yu M. Pagenkopf B. L. Tetrahedron. 2005;61:321.
    4. Cavitt M. A. Phun L. H. France S. Chem. Soc. Rev. 2014;43:804–818. - PubMed
    5. Schneider T. F. Kaschel J. Werz D. B. Angew. Chem., Int. Ed. 2014;53:5504–5523. - PubMed
    6. Grover H. K. Emmett M. R. Kerr M. A. Org. Biomol. Chem. 2015;13:655–671. - PubMed
    7. Pandey A. K. Ghosh A. Banerjee P. Isr. J. Chem. 2016;56:512–521.
    8. Talukdar R. Saha A. Ghorai M. K. Isr. J. Chem. 2016;56:445–453.
    9. Reiser O. Isr. J. Chem. 2016;56:531–539.
    10. Budynina E. M. Ivanov K. L. Sorokin I. D. Melnikov M. Y. Synthesis. 2017;49:3035–3068.
    1. Selected examples:

    2. Pohlhaus P. D. Johnson J. S. J. Am. Chem. Soc. 2005;127:16014–16015. - PubMed
    3. Pohlhaus P. D. Johnson J. S. J. Org. Chem. 2005;70:1057–1059. - PubMed
    4. Parsons A. T. Johnson J. S. J. Am. Chem. Soc. 2009;131:3122–3123. - PubMed
    5. Parsons A. T. Smith A. G. Neel A. J. Johnson J. S. J. Am. Chem. Soc. 2010;132:9688–9692. - PubMed
    6. Carson C. A. Kerr M. A. J. Org. Chem. 2005;70:8242–8244. - PubMed
    7. Curiel Tejeda J. E. Irwin L. C. Kerr M. A. Org. Lett. 2016;18:4738–4741. - PubMed
    8. Qu J.-P. Deng C. Zhou J. Sun X.-L. Tang Y. J. Org. Chem. 2009;74:7684–7689. - PubMed
    9. Xu H. Qu J.-P. Liao S. Xiong H. Tang Y. Angew. Chem., Int. Ed. 2013;52:4004–4007. - PubMed
    10. Xiong H. Xu H. Liao S. Xie Z. Tang Y. J. Am. Chem. Soc. 2013;135:7851–7854. - PubMed
    11. Yang G. Shen Y. Li K. Sun Y. Hua Y. J. Org. Chem. 2011;76:229–233. - PubMed
    12. Sathishkannan G. Srinivasan K. Org. Lett. 2011;13:6002–6005. - PubMed
    13. Goldberg A. F. G. Connor N. R. O. Craig R. A. Stoltz B. M. Org. Lett. 2012;14:5314–5317. - PMC - PubMed
    14. Wang H. Yang W. Liu H. Wang W. Li H. Org. Biomol. Chem. 2012;10:5032–5035. - PubMed
    15. Chakrabarty S. Chatterjee I. Wibbeling B. Daniliuc C. G. Studer A. Angew. Chem., Int. Ed. 2014;53:5964–5968. - PubMed
    16. Wang D.-C. Xie M.-S. Guo H.-M. Qu G.-R. Zhang M.-C. You S.-L. Angew. Chem., Int. Ed. 2016;55:14111–14115. - PubMed
    17. Verma K. Banerjee P. Adv. Synth. Catal. 2016;358:2053–2058.
    18. Augustin A. U. Sensse M. Jones P. G. Werz D. B. Angew. Chem., Int. Ed. 2017;56:14293–14296. - PubMed
    19. Augustin A. U. Busse M. Jones P. G. Werz D. B. Org. Lett. 2018;20:820–823. - PubMed
    20. Ahlburg N. L. Jones P. G. Werz D. B. Org. Lett. 2020;22:6404–6408. - PubMed
    21. Kaga A. Gandamana D. A. Tamura S. Demirelli M. Chiba S. Synlett. 2017;28:1091–1095.
    22. Matsumoto Y. Nakatake D. Yazaki R. Ohshima T. Chem.–Eur. J. 2018;24:6062–6066. - PubMed
    23. Mondal M. Panda M. Davis N. W. McKee V. Kerrigan N. J. Chem. Commun. 2019;55:13558–13561. - PubMed
    1. For a review see:

    2. de Nanteuil F. De Simone F. Frei R. Benfatti F. Serrano E. Waser J. Chem. Commun. 2014;50:10912–10928. - PubMed
    3. ; selected examples:

    4. de Nanteuil F. Waser J. Angew. Chem., Int. Ed. 2011;50:12075–12079. - PubMed
    5. Benfatti F. de Nanteuil F. Waser J. Org. Lett. 2012;14:386–389. - PubMed
    6. Benfatti F. de Nanteuil F. Waser J. Chem.–Eur. J. 2012;18:4844–4849. - PubMed
    7. Racine S. de Nanteuil F. Serrano E. Waser J. Angew. Chem., Int. Ed. 2014;53:8484–8487. - PubMed
    8. de Nanteuil F. Serrano E. Perrotta D. Waser J. J. Am. Chem. Soc. 2014;136:6239–6242. - PubMed
    9. Racine S. Hegedüs B. Scopelliti R. Waser J. Chem.–Eur. J. 2016;22:11997–12001. - PubMed
    10. Preindl J. Chakrabarty S. Waser J. Chem. Sci. 2017;8:7112–7118. - PMC - PubMed
    11. Suleymanov A. A. Le Du E. Dong Z. Muriel B. Scopelliti R. Fadaei-Tirani F. Waser J. Severin K. Org. Lett. 2020;22:4517–4522. - PubMed
    12. Rivero A. R. Fernandez I. Sierra M. Org. Lett. 2013;15:4928–4931. - PubMed
    13. Zhang M.-C. Wang D.-C. Xie M.-S. Qu G.-R. Guo H.-M. You S.-L. Chem. 2019;5:156–167.
    14. Hao E.-J. Fu D.-D. Wang D.-C. Zhang T. Qu G.-R. Li G.-X. Lan Y. Guo H.-M. Org. Chem. Front. 2019;6:863–867.
    15. Wang H.-X. Li W.-P. Zhang M.-M. Xie M.-S. Qu G.-R. Guo H.-M. Chem. Commun. 2020;56:11649–11652. - PubMed
    1. Wang L. Tang Y. Isr. J. Chem. 2016;56:463–475.
    2. Pirenne V. Muriel B. Waser J. Chem. Rev. 2021;121:227–263. - PubMed
    3. Xia Y. Liu X. H. Feng X. M. Angew. Chem., Int. Ed. 2021;60:9192–9204. - PubMed
    1. Zhang P.-P. Yan Z.-M. Li Y.-H. Gong J.-X. Yang Z. J. Am. Chem. Soc. 2017;139:13989–13992. - PubMed