Antifungal versus antibacterial defence of insect wings
- PMID: 34265480
- DOI: 10.1016/j.jcis.2021.06.093
Antifungal versus antibacterial defence of insect wings
Abstract
Hypothesis: The ability exhibited by insect wings to resist microbial infestation is a unique feature developed over 400 million years of evolution in response to lifestyle and environmental pressures. The self-cleaning and antimicrobial properties of insect wings may be attributed to the unique combination of nanoscale structures found on the wing surface.
Experiments: In this study, we characterised the wetting characteristics of superhydrophobic damselfly Calopteryx haemorrhoidalis wings. We revealed the details of air entrapment at the micro- and nano scales on damselfly wing surfaces using a combination of spectroscopic and electron microscopic techniques. Cryo-focused-ion-beam scanning electron microscopy was used to directly observe fungal spores and conidia that were unable to cross the air-liquid interface. By contrast, bacterial cells were able to cross the air-water interface to be ruptured upon attachment to the nanopillar surface. The robustness of the air entrapment, and thus the wing antifungal behaviour, was demonstrated after 1-week of water immersion. A newly developed wetting model confirmed the strict Cassie-Baxter wetting regime when damselfly wings are immersed in water.
Findings: We provide evidence that the surface nanopillar topography serves to resist both fungal and bacterial attachment via a dual action: repulsion of fungal conidia while simultaneously killing bacterial cells upon direct contact. These findings will play an important role in guiding the fabrication of biomimetic, anti-fouling surfaces that exhibit both bactericidal and anti-fungal properties.
Keywords: Antibacterial; Antifungal; Self-cleaning; Superhydrophobic.
Copyright © 2021 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources