Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Oct 15:420:126571.
doi: 10.1016/j.jhazmat.2021.126571. Epub 2021 Jul 6.

Extraction of microplastics from sediment matrices: Experimental comparative analysis

Affiliations

Extraction of microplastics from sediment matrices: Experimental comparative analysis

Mel Constant et al. J Hazard Mater. .

Abstract

Microplastics are small (<5 mm) fragments of plastic debris that are ubiquitous in oceans and terrestrial ecosystems. Studies on microplastics in sediment and soil matrices are particularly challenging because of the need to separate the plastics from the sediments. We investigated the efficiencies of 18 combinations of six extracting solutions (ESs) (oil, water, oil-in-water, NaCl, oil-in-NaCl, and NaI) and three isolation methods (IMs) (hand stirring, centrifugation, and aeration) for fine and coarse sediments, with low and high density polymers. IMs did not affect the extraction efficiency. Except in case of oil, all ESs enabled good extraction (84 ± 17%) of light polymers (PE and PE-ABS). NaI presented the best extraction efficiency (71 ± 17%) for the densest polymers (PET, PES, and PA). For these ESs, fibers were extracted at a lower efficiency than pellets and fragments, and sediment gran size did not affect the extraction. For other ESs, mean extraction rates ranged from 5% to 48%. Overall, the extraction efficiencies were lower than those found in the literature, despite repeating the separation process three times. The collection of floating materials remained a problem, as plastics tended to adhere to the glass wall. Our work will help the comparability between previous and future monitoring results and the selection of the most suitable protocols for future studies. This work clearly demonstrates also that there is no robust protocol for extracting all types and forms of microplastics from fine sediments and that research efforts to arrive at a reliable method remain by taking account the interaction of MPs with other particles as well as the electrostatic properties of MP.

Keywords: Comparative analysis; Extraction methods; Microplastics; Sediments; Soil.

PubMed Disclaimer

Publication types

LinkOut - more resources