Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov-Dec;78(6):2046-2051.
doi: 10.1016/j.jsurg.2021.06.013. Epub 2021 Jul 12.

Natural Language Processing to Estimate Clinical Competency Committee Ratings

Affiliations

Natural Language Processing to Estimate Clinical Competency Committee Ratings

Kenneth L Abbott et al. J Surg Educ. 2021 Nov-Dec.

Abstract

Objective: Residency program faculty participate in clinical competency committee (CCC) meetings, which are designed to evaluate residents' performance and aid in the development of individualized learning plans. In preparation for the CCC meetings, faculty members synthesize performance information from a variety of sources. Natural language processing (NLP), a form of artificial intelligence, might facilitate these complex holistic reviews. However, there is little research involving the application of this technology to resident performance assessments. With this study, we examine whether NLP can be used to estimate CCC ratings.

Design: We analyzed end-of-rotation assessments and CCC assessments for all surgical residents who trained at one institution between 2014 and 2018. We created models of end-of-rotation assessment ratings and text to predict dichotomized CCC assessment ratings for 16 Accreditation Council for Graduate Medical Education (ACGME) Milestones. We compared the performance of models with and without predictors derived from NLP of end-of-rotation assessment text.

Results: We analyzed 594 end-of-rotation assessments and 97 CCC assessments for 24 general surgery residents. The mean (standard deviation) for area under the receiver operating characteristic curve (AUC) was 0.84 (0.05) for models with only non-NLP predictors, 0.83 (0.06) for models with only NLP predictors, and 0.87 (0.05) for models with both NLP and non-NLP predictors.

Conclusions: NLP can identify language correlated with specific ACGME Milestone ratings. In preparation for CCC meetings, faculty could use information automatically extracted from text to focus attention on residents who might benefit from additional support and guide the development of educational interventions.

Keywords: Interpersonal And Communication Skills; Medical Knowledge; Natural language processing; Patient Care; Practice-Based Learning And Improvement; Professionalism; Systems-Based Practice; assessment; clinical competency committee; evaluation; resident.

PubMed Disclaimer

Publication types

LinkOut - more resources