Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jun 29:12:695486.
doi: 10.3389/fphar.2021.695486. eCollection 2021.

Fructose Metabolism and Cardiac Metabolic Stress

Affiliations
Review

Fructose Metabolism and Cardiac Metabolic Stress

M Annandale et al. Front Pharmacol. .

Abstract

Cardiovascular disease is one of the leading causes of mortality in diabetes. High fructose consumption has been linked with the development of diabetes and cardiovascular disease. Serum and cardiac tissue fructose levels are elevated in diabetic patients, and cardiac production of fructose via the intracellular polyol pathway is upregulated. The question of whether direct myocardial fructose exposure and upregulated fructose metabolism have potential to induce cardiac fructose toxicity in metabolic stress settings arises. Unlike tightly-regulated glucose metabolism, fructose bypasses the rate-limiting glycolytic enzyme, phosphofructokinase, and proceeds through glycolysis in an unregulated manner. In vivo rodent studies have shown that high dietary fructose induces cardiac metabolic stress and functional disturbance. In vitro, studies have demonstrated that cardiomyocytes cultured in high fructose exhibit lipid accumulation, inflammation, hypertrophy and low viability. Intracellular fructose mediates post-translational modification of proteins, and this activity provides an important mechanistic pathway for fructose-related cardiomyocyte signaling and functional effect. Additionally, fructose has been shown to provide a fuel source for the stressed myocardium. Elucidating the mechanisms of fructose toxicity in the heart may have important implications for understanding cardiac pathology in metabolic stress settings.

Keywords: advanced glycation end – products; carbohydrate metabolism; cardiac lipogenesis; diabetic cardiomyopathy (DCM); fructolysis.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

FIGURE 1
FIGURE 1
Cardiomyocyte fructose metabolism. Fructose is phosphorylated by fructokinase (FK) to fructose 1-phosphate (F1P), and metabolized to triose phosphates, dihydroxyacetone phosphate (DHAP) and glyceraldehyde (GA). The polyol pathway (black) converts glucose to sorbitol via aldose reductase (AR), and sorbitol to glucose via sorbitol dehydrogenase (SDH). DHAP and GA are converted to glyceraldehyde 3-phosphates (GA3P) and provide substrates for glycolysis to produce acetyl-CoA to enter the mitochondrial TCA cycle. DHAP and TCA cycle-derived citrate contribute to lipid biosynthesis. HKII, hexokinase 2; PFK, phosphofructokinase; TCA, tricarboxylic acid. Created using biorender.com. Adapted from Daniels et al., 2021.

References

    1. Anderson E. J., Kypson A. P., Rodriguez E., Anderson C. A., Lehr E. J., Neufer P. D. (2009). Substrate-specific Derangements in Mitochondrial Metabolism and Redox Balance in the Atrium of the Type 2 Diabetic Human Heart. J. Am. Coll. Cardiol. 54, 1891–1898. 10.1016/j.jacc.2009.07.031 - DOI - PMC - PubMed
    1. Axelsen L. N., Lademann J. B., Petersen J. S., Holstein-Rathlou N.-H., Ploug T., Prats C., et al. (2010). Cardiac and Metabolic Changes in Long-Term High Fructose-Fat Fed Rats with Severe Obesity and Extensive Intramyocardial Lipid Accumulation. Am. J. Physiology-Regulatory, Integr. Comp. Physiol. 298, R1560–R1570. 10.1152/ajpregu.00392.2009 - DOI - PubMed
    1. Berg T. J., Snorgaard O., Faber J., Torjesen P. A., Hildebrandt P., Mehlsen J., et al. (1999). Serum Levels of Advanced Glycation End Products Are Associated with Left Ventricular Diastolic Function in Patients with Type 1 Diabetes. Diabetes Care 22, 1186–1190. 10.2337/diacare.22.7.1186 - DOI - PubMed
    1. Bidasee K. R., Nallani K., Yu Y., Cocklin R. R., Zhang Y., Wang M., et al. (2003). Chronic Diabetes Increases Advanced Glycation End Products on Cardiac Ryanodine Receptors/calcium-Release Channels. Diabetes 52, 1825–1836. 10.2337/diabetes.52.7.1825 - DOI - PubMed
    1. Bidasee K. R., Zhang Y., Shao C. H., Wang M., Patel K. P., Dincer U. D., et al. (2004). Diabetes Increases Formation of Advanced Glycation End Products on Sarco(endo)plasmic Reticulum Ca2+-ATPase. Diabetes 53, 463–473. 10.2337/diabetes.53.2.463 - DOI - PubMed

LinkOut - more resources