Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Oct 20;26(21):6592-8.
doi: 10.1021/bi00395a005.

Gel phase polymorphism in ether-linked dihexadecylphosphatidylcholine bilayers

Affiliations

Gel phase polymorphism in ether-linked dihexadecylphosphatidylcholine bilayers

J T Kim et al. Biochemistry. .

Abstract

The structure and properties of the ether-linked 1,2-dihexadecylphosphatidylcholine (DHPC) have been examined as a function of hydration. By differential scanning calorimetry, DHPC exhibits an endothermic (chain melting) transition with the transition temperature (limiting value, 44.2 degrees C) and enthalpy (limiting value, delta H = 8.0 kcal/mol) being hydration dependent. For hydration values greater than 30 wt % water, DHPC exhibits a pretransition at approximately 36 degrees C (delta H = 1.1 kcal/mol) and a subtransition at approximately 5 degrees C (delta H = 0.2 kcal/mol). By X-ray diffraction, at 22 degrees C DHPC exhibits a normal bilayer gel structure with the bilayer periodicity increasing from 58.0 to 62.5 A over the hydration range 9.5-25.4% water. At 30-32% water, two coexisting gel phases are observed with d = 63-64 A and d = 44-45 A; at higher hydration, only the latter phase is present, reaching a limiting d = 47.0 A at 37.5% water. Two different gel phases clearly exist at low and high hydrations. Electron density profiles at low hydration (9.5-25.4%) show a bilayer thickness dp-p = 46 A, whereas at greater than 32% water the bilayer thickness is markedly reduced, dp-p = 30 A. These and other structural parameters indicate a hydration-dependent gel----gel structural transition between a normal bilayer (two chains per polar group) and the chain-interdigitated bilayer (four chains per polar group) arrangement described previously for DHPC [Ruocco, M. J., Siminovitch, D. J., & Griffin, R. G. (1985) Biochemistry 24, 2406-2411].(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Publication types

LinkOut - more resources