Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Oct 15:134:1-12.
doi: 10.1016/j.actbio.2021.07.015. Epub 2021 Jul 13.

Tumor vasculature-targeting nanomedicines

Affiliations
Review

Tumor vasculature-targeting nanomedicines

Ying Zhang et al. Acta Biomater. .

Abstract

Uncontrolled tumor growth and subsequent distant metastasis are highly dependent on an adequate nutrient supply from tumor blood vessels, which have relatively different pathophysiological characteristics from those of normal vasculature. Obviously, strategies targeting tumor vasculature, such as anti-angiogenic drugs and vascular disrupting agents, are attractive methods for cancer therapy. However, the off-target effects and high dose administration of these drug regimens critically restrict their clinical applications. In recent years, nanomedicines focused on tumor vasculature have been shown to be superior to traditional therapeutic methods and do not induce side effects. This review will first highlight the recent development of tumor vasculature-targeting nanomedicines from the following four aspects: 1) angiogenesis-inhibiting nanomedicines (AINs); 2) vasculature-disrupting nanomedicines (VDNs); 3) vasculature infarction nanomedicines (VINs); and 4) vasculature-regulating nanomedicines (VRNs). Furthermore, the design principles, limitations, and future directions are also discussed. STATEMENT OF SIGNIFICANCE: Based on the essential roles of tumor blood vessels, the therapeutic strategies targeting tumor vasculature have exhibited good clinical therapeutic outcomes. However, poor patient adherence to free drug administration limits their clinical usage. Nanomedicines have great potential to overcome the abovementioned obstacle. This review summarizes the tumor-vasculature targeting nanomedicines from four aspects: 1) angiogenesis-inhibiting nanomedicines (AINs); 2) vasculature-disrupting nanomedicines (VDNs); 3) vasculature infarction nanomedicines (VINs); and 4) vasculature regulating nanomedicines (VRNs). In addition, this review provides perspectives on this research field.

Keywords: Angiogenesis inhibition; Nanomedicine; Tumor vasculature; Vasculature infarction; Vasculature regulation; Vasculature-disrupting agent.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing interest The authors declared there was no conflict of Interest in this work.

MeSH terms

Substances

LinkOut - more resources