Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1987 Dec;43(4):895-901.

Analysis of covariance in parallel-group clinical trials with pretreatment baselines

Affiliations
  • PMID: 3427174
Comparative Study

Analysis of covariance in parallel-group clinical trials with pretreatment baselines

M R Crager. Biometrics. 1987 Dec.

Abstract

Analysis of covariance (ANCOVA) techniques are often employed in the analysis of clinical trials to try to account for the effects of varying pretreatment baseline values of an outcome variable on posttreatment measurements of the same variable. Baseline measurements of outcome variables are typically random variables, which violates the usual ANCOVA assumption that covariate values are fixed. Therefore, the usual ANCOVA hypothesis tests of treatment effects may be invalid, and the ANCOVA slope parameter estimator biased, for this application. We show, however, that if the pretreatment - posttreatment measurements have a bivariate normal distribution, then (i) the ANCOVA model with residual error independent of the covariate is a valid expression of the relationship between pretreatment and posttreatment measurements; (ii) the usual (fixed-covariate analysis) ANCOVA estimates of the slope parameter and treatment effect contrasts are unbiased; and (iii) the usual ANCOVA treatment effect contrast t-tests are valid significance tests for treatment effects. Moreover, as long as the magnitudes of the treatment effects do not depend on the "true" pretreatment value of the outcome variable, the true slope parameter must lie in the interval (0, 1) and the ANCOVA model has a clear interpretation as an adjustment (based on between- and within-subject variability) to an analysis of variance model applied to the posttreatment-pretreatment differences.

PubMed Disclaimer

Publication types

LinkOut - more resources