Membranotropic and biological activities of the membrane fusion peptides from SARS-CoV spike glycoprotein: The importance of the complete internal fusion peptide domain
- PMID: 34274319
- PMCID: PMC8280623
- DOI: 10.1016/j.bbamem.2021.183697
Membranotropic and biological activities of the membrane fusion peptides from SARS-CoV spike glycoprotein: The importance of the complete internal fusion peptide domain
Abstract
Fusion peptides (FP) are prominent hydrophobic segments of viral fusion proteins that play critical roles in viral entry. FPs interact with and insert into the host lipid membranes, triggering conformational changes in the viral protein that leads to the viral-cell fusion. Multiple membrane-active domains from the severe acute respiratory syndrome (SARS) coronavirus (CoV) spike protein have been reported to act as the functional fusion peptide such as the peptide sequence located between the S1/S2 and S2' cleavage sites (FP1), the S2'-adjacent fusion peptide domain (FP2), and the internal FP sequence (cIFP). Using a combined biophysical approach, we demonstrated that the α-helical coiled-coil-forming internal cIFP displayed the highest membrane fusion and permeabilizing activities along with membrane ordering effect in phosphatidylcholine (PC)/phosphatidylglycerol (PG) unilamellar vesicles compared to the other two N-proximal fusion peptide counterparts. While the FP1 sequence displayed intermediate membranotropic activities, the well-conserved FP2 peptide was substantially less effective in promoting fusion, leakage, and membrane ordering in PC/PG model membranes. Furthermore, Ca2+ did not enhance the FP2-induced lipid mixing activity in PC/phosphatidylserine/cholesterol lipid membranes, despite its strong erythrocyte membrane perturbation. Nonetheless, we found that the three putative SARS-CoV membrane-active fusion peptide sequences here studied altered the physical properties of model and erythrocyte membranes to different extents. The importance of the distinct membranotropic and biological activities of all SARS-CoV fusion peptide domains and the pronounced effect of the internal fusion peptide sequence to the whole spike-mediated membrane fusion process are discussed.
Keywords: COVID; Fusion peptide; Lipid-protein interaction; Membrane protein; SARS-CoV; SARS-CoV-2; Viral fusion.
Copyright © 2021 Elsevier B.V. All rights reserved.
Conflict of interest statement
ANTONIO J C FILHO reports financial support and equipment, drugs, or supplies were provided by State of Sao Paulo Research Foundation.
Figures








Similar articles
-
The SARS-CoV Fusion Peptide Forms an Extended Bipartite Fusion Platform that Perturbs Membrane Order in a Calcium-Dependent Manner.J Mol Biol. 2017 Dec 8;429(24):3875-3892. doi: 10.1016/j.jmb.2017.10.017. Epub 2017 Oct 19. J Mol Biol. 2017. PMID: 29056462 Free PMC article.
-
SARS-CoV-2 spike fusion peptide trans interaction with phosphatidylserine lipid triggers membrane fusion for viral entry.mBio. 2024 Sep 11;15(9):e0107724. doi: 10.1128/mbio.01077-24. Epub 2024 Aug 8. mBio. 2024. PMID: 39115315 Free PMC article.
-
SARS-CoV-2 Fusion Peptide has a Greater Membrane Perturbating Effect than SARS-CoV with Highly Specific Dependence on Ca2.J Mol Biol. 2021 May 14;433(10):166946. doi: 10.1016/j.jmb.2021.166946. Epub 2021 Mar 18. J Mol Biol. 2021. PMID: 33744314 Free PMC article.
-
Diverse approaches to express recombinant spike protein: A comprehensive review.Protein Expr Purif. 2024 Nov;223:106556. doi: 10.1016/j.pep.2024.106556. Epub 2024 Jul 14. Protein Expr Purif. 2024. PMID: 39009199 Review.
-
Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells.Virology. 2018 Apr;517:3-8. doi: 10.1016/j.virol.2017.12.015. Epub 2017 Dec 21. Virology. 2018. PMID: 29275820 Free PMC article. Review.
Cited by
-
Effects of Nicotine on the Thermodynamics and Phase Coexistence of Pulmonary Surfactant Model Membranes.Membranes (Basel). 2024 Dec 11;14(12):267. doi: 10.3390/membranes14120267. Membranes (Basel). 2024. PMID: 39728717 Free PMC article.
-
A Uniquely Stable Trimeric Model of SARS-CoV-2 Spike Transmembrane Domain.Int J Mol Sci. 2022 Aug 17;23(16):9221. doi: 10.3390/ijms23169221. Int J Mol Sci. 2022. PMID: 36012488 Free PMC article.
-
Spike substitution T813S increases Sarbecovirus fusogenicity by enhancing the usage of TMPRSS2.PLoS Pathog. 2023 May 17;19(5):e1011123. doi: 10.1371/journal.ppat.1011123. eCollection 2023 May. PLoS Pathog. 2023. PMID: 37196033 Free PMC article.
-
Membrane-Active Peptides and Their Potential Biomedical Application.Pharmaceutics. 2023 Aug 6;15(8):2091. doi: 10.3390/pharmaceutics15082091. Pharmaceutics. 2023. PMID: 37631305 Free PMC article. Review.
-
SARS-CoV-2 FP1 Destabilizes Lipid Membranes and Facilitates Pore Formation.Int J Mol Sci. 2025 Jan 15;26(2):686. doi: 10.3390/ijms26020686. Int J Mol Sci. 2025. PMID: 39859399 Free PMC article.
References
-
- Rota P.A., Oberste M.S., Monroe S.S., Nix W.A., Campagnoli R., Icenogle J.P., Bankamp B., Maher K., Chen M., Tong S., Tamin A., Lowe L., Frace M., Derisi J.L., Chen Q., Wang D., Erdman D.D., Peret T.C.T., Burns C., Ksiazek T.G., Rollin P.E., Sanchez A., Liffick S., Holloway B., Limor J., Mccaustland K., Olsen-rasmussen M., Fouchier R., Osterhaus A.D.M.E., Drosten C., Pallansch M.A., Anderson L.J., Bellini W.J. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science (80- ) 2003;300:1394–1399. - PubMed
-
- C.N.C.I. and R. Team. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G.F., Tan W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020;382:727–733. doi: 10.1056/NEJMoa2001017. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous