Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Nov 15:192:113485.
doi: 10.1016/j.bios.2021.113485. Epub 2021 Jul 5.

Paper-based platforms for microbial electrochemical cell-based biosensors: A review

Affiliations
Review

Paper-based platforms for microbial electrochemical cell-based biosensors: A review

Tae Hyun Chung et al. Biosens Bioelectron. .

Abstract

The development of low-cost analytical devices for on-site water quality monitoring is a critical need, especially for developing countries and remote communities in developed countries with limited resources. Microbial electrochemical cell-based (MXC) biosensors have been quite promising for quantitative and semi-quantitative (often qualitative) measurements of various water quality parameters due to their low cost and simplicity compared to traditional analytical methods. However, conventional MXC biosensors often encounter challenges, such as the slow establishment of biofilms, low sensitivity, and poor recoverability, making them unable to be applied for practical cases. In response, MXC biosensors assembled with paper-based materials demonstrated tremendous potentials to enhance sensitivity and field applicability. Furthermore, the paper-based platforms offer many prominent features, including autonomous liquid transport, rapid bacterial adhesion, lowered resistance, low fabrication cost (<$1 in USD), and eco-friendliness. Therefore, this review aims to summarize the current trend and applications of paper-based MXC biosensors, along with critical discussions on their field applicability. Moreover, future advancements of paper-based MXC biosensors, such as developing a novel paper-based biobatteries, increasing the system performance using an unique biocatalyst, such as yeast, and integrating the biosensor system with other advanced tools, such as machine learning and 3D printing, are highlighted.

Keywords: Biosensor; Environmental monitoring; Microbial electrolysis cells; Microbial fuel cells; Microfluidic; Paper-based.

PubMed Disclaimer

LinkOut - more resources