Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 19;12(26):9031-9036.
doi: 10.1039/d1sc01978c. eCollection 2021 Jul 7.

Efficient synthesis of antiviral agent uprifosbuvir enabled by new synthetic methods

Affiliations

Efficient synthesis of antiviral agent uprifosbuvir enabled by new synthetic methods

Artis Klapars et al. Chem Sci. .

Abstract

An efficient route to the HCV antiviral agent uprifosbuvir was developed in 5 steps from readily available uridine in 50% overall yield. This concise synthesis was achieved by development of several synthetic methods: (1) complexation-driven selective acyl migration/oxidation; (2) BSA-mediated cyclization to anhydrouridine; (3) hydrochlorination using FeCl3/TMDSO; (4) dynamic stereoselective phosphoramidation using a chiral nucleophilic catalyst. The new route improves the yield of uprifosbuvir 50-fold over the previous manufacturing process and expands the tool set available for synthesis of antiviral nucleotides.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Synthetic approaches to uprifosbuvir 1 with the two main challenges highlighted. (a) Me2NH, AcOH, EtOH/MeOH, 80 °C, 1.5 h; (b) Ca(OH)2, water, 70 °C, 24 h, 19% over 2 steps.
Scheme 2
Scheme 2. Decomposition during attempted direct biocatalytic oxidation of uridine 5. (a) General screening conditions: KRED enzyme variants, NAD or NADP cofactor, acetone-water, 30 °C. The reactions were screened using a set of buffers with pH of 6.5–7 (potassium phosphate) and pH of 5–6 (sodium borate).
Scheme 3
Scheme 3. Complexation-driven selective acyl migration/oxidation to access 12. (a) PivCl, pyridine, 0 °C, 16 h; (b) BF3·OEt2, PhMe, 40 °C, 10 h; (c) TEMPO, Bu4NBr, AcOOH, dioctyl sulphide, PhMe, −10 °C to 20 °C, 24 h, 83% from 5.
Scheme 4
Scheme 4. Olefination/hydrochlorination of the ketone 12. (a) TMSCH2MgCl, CPME, 0 °C to rt, 24 h, 91%; (b) (CF3CO)2O, pyridine, DMAP, MeCN, rt, 15 h, then KF, 70 °C, 24 h, 88%; (c) K2CO3, MeOH/THF, 40 °C, 15 h, 94%; (d) FeCl3, PhSiH3, rt, 48 h, 82%.
Scheme 5
Scheme 5. Formation of tertiary chloride 4. (a) BSA, 1 mol% of 37% aq HCl, anisole, 75 °C, 8 h; (b) DBU, MeOH, 60 °C, 10 h, 87% yield from 16; (c) Me2SiCl2, DMF, 1,2-dimethoxyethane (DME), 70 °C, 10 h; (d) FeCl3–6H2O, (Me2SiH)2O, 25 °C, 12 h, 85% from 19.
Scheme 6
Scheme 6. Completion of uprifosbuvir synthesis. (a) TMS-Cl, iPrOH, 70 °C, 12 h; (b) NEt3, iPrOAc, wiped film evaporation, 80%; (c) PhOP(O)Cl2, NEt3, iPrOAc, −20 °C, 2 h, 90%; (d) C6F5OH, NEt3, iPrOAc, −5 °C to 10 °C, 18 h, 76%; (e) 4, 3 mol% 24, 2,6-lutidine, 1,3-dioxolane, −10 °C, 24 h, 88%; (f) 4, tBuMgCl, THF, −5 °C to 5 °C, 15 h, 50%; (g) 4, Me2AlCl, 2,6-lutidine, THF, 35 °C, 16 h, 81%.
Scheme 7
Scheme 7. Summary of uprifosbuvir synthesis. AY = assay yield; IY = isolated yield.

References

    1. De Clercq E. Li G. Clin. Microbiol. Rev. 2016;29:695–747. - PMC - PubMed
    1. Li G. De Clercq E. Nat. Rev. Drug Discovery. 2020;19:149–150. - PubMed
    2. Batalha P. N. Forezi L. S. M. Lima C. G. S. Pauli F. P. Boechat F. C. S. de Souza M. C. B. V. Cunha A. C. Ferreira V. F. da Silva F. de C. Bioorg. Chem. 2021;106:104488. - PMC - PubMed
    1. https://www.who.int/news-room/fact-sheets/detail/hepatitis-c https://www.who.int/news-room/fact-sheets/detail/hepatitis-c
    1. HCV: The Journey from Discovery to a Cure, ed. M. J. Sofia, Top. Med. Chem., 2019, vol. 32
    1. Alexandre F.-R. Badaroux E. Bilello J. P. Bot S. Bouisset T. Brandt G. Cappelle S. Chapron C. Chaves D. Convard T. Counor C. Da Costa D. Dukhan D. Gay M. Gosselin G. Griffon J.-F. Gupta K. Hernandez-Santiago B. La Colla M. Lioure M.-P. Milhau J. Paparin J.-L. Peyronnet J. Parsy C. Rouvière C. P. Rahali H. Rahali R. Salanson A. Seifer M. Serra I. Standring D. Surleraux D. Dousson C. B. Bioorg. Med. Chem. Lett. 2017;27:4323–4330. - PubMed