A Nearly Packaging-Free Design Paradigm for Light, Powerful, and Energy-Dense Primary Microbatteries
- PMID: 34278621
- DOI: 10.1002/adma.202101760
A Nearly Packaging-Free Design Paradigm for Light, Powerful, and Energy-Dense Primary Microbatteries
Abstract
Billions of internet connected devices used for medicine, wearables, and robotics require microbattery power sources, but the conflicting scaling laws between electronics and energy storage have led to inadequate power sources that severely limit the performance of these physically small devices. Reported here is a new design paradigm for primary microbatteries that drastically improves energy and power density by eliminating the vast majority of the packaging and through the use of high-energy-density anode and cathode materials. These light (50-80 mg) and small (20-40 µL) microbatteries are enabled though the electroplating of 130 µm-thick 94% dense additive-free and crystallographically oriented LiCoO2 onto thin metal foils, which also act as the encapsulation layer. These devices have 430 Wh kg-1 and 1050 Wh L-1 energy densities, 4 times the energy density of previous similarly sized microbatteries, opening up the potential to power otherwise unpowerable microdevices.
Keywords: Internet of Things; energy density; microbatteries; microdevices; microrobotics; packaging.
© 2021 Wiley-VCH GmbH.
References
-
- Global IoT market will grow to 24.1 billion devices in 2030, generating $1.5 trillion annual revenue, https://transformainsights.com/news/iot-market-24-billion-usd15-trillion... (accessed: November 2020).
-
- Micro Battery Market by Type (Thin Film, Printed, Solid State Chip Battery), Capacity, Rechargeability, Application (Smart Cards, Smart Packaging, Medical Devices, Wearable Devices), and Geography - Global Forecast to 2025, https://www.marketsandmarkets.com/Market-Reports/micro-battery-market-25... (accessed: November 2020).
-
- B. Goldberg, R. Zufferey, N. Doshi, E. F. Helbling, G. Whittredge, M. Kovac, R. J. Wood, IEEE Robot. Autom. Lett. 2018, 3, 987.
-
- N. T. Jafferis, E. F. Helbling, M. Karpelson, R. J. Wood, Nature 2019, 570, 491.
-
- National Research Council, The Future of Computing Performance: Game Over or Next Level?, The National Academies Press, Washington, DC, USA 2011.
Grants and funding
LinkOut - more resources
Full Text Sources