The Complex Genetic Basis and Multilayered Regulatory Control of Yeast Pseudohyphal Growth
- PMID: 34280314
- DOI: 10.1146/annurev-genet-071719-020249
The Complex Genetic Basis and Multilayered Regulatory Control of Yeast Pseudohyphal Growth
Abstract
Eukaryotic cells are exquisitely responsive to external and internal cues, achieving precise control of seemingly diverse growth processes through a complex interplay of regulatory mechanisms. The budding yeast Saccharomyces cerevisiae provides a fascinating model of cell growth in its stress-responsive transition from planktonic single cells to a filamentous pseudohyphal growth form. During pseudohyphal growth, yeast cells undergo changes in morphology, polarity, and adhesion to form extended and invasive multicellular filaments. This pseudohyphal transition has been studied extensively as a model of conserved signaling pathways regulating cell growth and for its relevance in understanding the pathogenicity of the related opportunistic fungus Candida albicans, wherein filamentous growth is required for virulence. This review highlights the broad gene set enabling yeast pseudohyphal growth, signaling pathways that regulate this process, the role and regulation of proteins conferring cell adhesion, and interesting regulatory mechanisms enabling the pseudohyphal transition.
Keywords: FLO genes; MAPK; Saccharomyces cerevisiae; cell adhesion; filamentous growth; invasive growth.
Similar articles
-
Messengers for morphogenesis: inositol polyphosphate signaling and yeast pseudohyphal growth.Curr Genet. 2019 Feb;65(1):119-125. doi: 10.1007/s00294-018-0874-0. Epub 2018 Aug 12. Curr Genet. 2019. PMID: 30101372 Review.
-
A Stress-Responsive Signaling Network Regulating Pseudohyphal Growth and Ribonucleoprotein Granule Abundance in Saccharomyces cerevisiae.Genetics. 2019 Oct;213(2):705-720. doi: 10.1534/genetics.119.302538. Epub 2019 Aug 27. Genetics. 2019. PMID: 31455721 Free PMC article.
-
Genetic networks inducing invasive growth in Saccharomyces cerevisiae identified through systematic genome-wide overexpression.Genetics. 2013 Apr;193(4):1297-310. doi: 10.1534/genetics.112.147876. Epub 2013 Feb 14. Genetics. 2013. PMID: 23410832 Free PMC article.
-
Pooled segregant sequencing reveals genetic determinants of yeast pseudohyphal growth.PLoS Genet. 2014 Aug 21;10(8):e1004570. doi: 10.1371/journal.pgen.1004570. eCollection 2014 Aug. PLoS Genet. 2014. PMID: 25144783 Free PMC article.
-
Germ tube growth of Candida albicans.Curr Top Med Mycol. 1997 Dec;8(1-2):43-55. Curr Top Med Mycol. 1997. PMID: 9504066 Review.
Cited by
-
Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation.Genetics. 2024 Oct 7;228(2):iyae122. doi: 10.1093/genetics/iyae122. Genetics. 2024. PMID: 39239926 Review.
-
To each its own: Mechanisms of cross-talk between GPI biosynthesis and cAMP-PKA signaling in Candida albicans versus Saccharomyces cerevisiae.J Biol Chem. 2024 Jul;300(7):107444. doi: 10.1016/j.jbc.2024.107444. Epub 2024 Jun 4. J Biol Chem. 2024. PMID: 38838772 Free PMC article. Review.
-
Caffeine activates HOG-signalling and inhibits pseudohyphal growth in Saccharomyces cerevisiae.BMC Res Notes. 2023 Apr 14;16(1):52. doi: 10.1186/s13104-023-06312-3. BMC Res Notes. 2023. PMID: 37060035 Free PMC article.
-
Quorum Sensing as a Trigger That Improves Characteristics of Microbial Biocatalysts.Microorganisms. 2023 May 25;11(6):1395. doi: 10.3390/microorganisms11061395. Microorganisms. 2023. PMID: 37374897 Free PMC article. Review.
-
Kcs1 and Vip1: The Key Enzymes behind Inositol Pyrophosphate Signaling in Saccharomyces cerevisiae.Biomolecules. 2024 Jan 26;14(2):152. doi: 10.3390/biom14020152. Biomolecules. 2024. PMID: 38397389 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases