Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jul 1;22(13):7152.
doi: 10.3390/ijms22137152.

Basic Helix-Loop-Helix (bHLH) Transcription Factors Regulate a Wide Range of Functions in Arabidopsis

Affiliations
Review

Basic Helix-Loop-Helix (bHLH) Transcription Factors Regulate a Wide Range of Functions in Arabidopsis

Yaqi Hao et al. Int J Mol Sci. .

Abstract

The basic helix-loop-helix (bHLH) transcription factor family is one of the largest transcription factor gene families in Arabidopsis thaliana, and contains a bHLH motif that is highly conserved throughout eukaryotic organisms. Members of this family have two conserved motifs, a basic DNA binding region and a helix-loop-helix (HLH) region. These proteins containing bHLH domain usually act as homo- or heterodimers to regulate the expression of their target genes, which are involved in many physiological processes and have a broad range of functions in biosynthesis, metabolism and transduction of plant hormones. Although there are a number of articles on different aspects to provide detailed information on this family in plants, an overall summary is not available. In this review, we summarize various aspects of related studies that provide an overview of insights into the pleiotropic regulatory roles of these transcription factors in plant growth and development, stress response, biochemical functions and the web of signaling networks. We then provide an overview of the functional profile of the bHLH family and the regulatory mechanisms of other proteins.

Keywords: basic helix-loop-helix (bHLH); cross-talk; plant growth and development; transcription factor.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
bHLHs functions in various signaling pathways.
Figure 2
Figure 2
Simplified model for bHLH PREs, MYCs and PIFs, which play central roles in many pathways in Arabidopsis. PIFs bind to their target genes to regulate plant growth and development via manipulation of signaling pathways. PREs and MYCs also participate in core transcription networks together with PIFs to control plant responses to the environment.

Similar articles

Cited by

References

    1. Murre C., McCaw P.S., Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell. 1989;56:777–783. doi: 10.1016/0092-8674(89)90682-X. - DOI - PubMed
    1. Massari M.E., Murre C. Helix-loop-helix proteins: Regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 2000;20:429–440. doi: 10.1128/MCB.20.2.429-440.2000. - DOI - PMC - PubMed
    1. Duek P.D., Fankhauser C. bHLH class transcription factors take centre stage in phytochrome signalling. Trends Plant Sci. 2005;10:51–54. doi: 10.1016/j.tplants.2004.12.005. - DOI - PubMed
    1. Feller A., Machemer K., Braun E.L., Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J. 2011;66:94–116. doi: 10.1111/j.1365-313X.2010.04459.x. - DOI - PubMed
    1. Atchley W.R., Fitch W.M. A natural classification of the basic helix-loop-helix class of transcription factors. Proc. Natl. Acad. Sci. USA. 1997;94:5172–5176. doi: 10.1073/pnas.94.10.5172. - DOI - PMC - PubMed

MeSH terms

Substances

LinkOut - more resources