Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug:30:1-8.
doi: 10.1016/j.lssr.2021.04.001. Epub 2021 Apr 6.

Investigating alterations in the cellular envelope of Staphylococcus aureus in simulated microgravity using a random positioning machine

Affiliations

Investigating alterations in the cellular envelope of Staphylococcus aureus in simulated microgravity using a random positioning machine

Sandhya Singh et al. Life Sci Space Res (Amst). 2021 Aug.

Abstract

Continuous rotation of liquid bacterial culture in random positioning machine (RPM) causes formation of a colloidal bacterial culture in the culture tube, due to lack of sedimentation and convection. Interestingly, similar colloidal bacterial cultures can also be seen in suspended bacterial cultures in a spaceflight environment. Thus, as a consequence of no sedimentation, an alteration in the microenvironment of each bacterial cell in simulated microgravity is introduced, compared to the bacterial culture grown in normal gravity wherein they sediment slowly at the bottom of the culture tube. Apparently, a bacterial cell can sense changes in its environment through various receptors and sensors present at its surface, thus it can be speculated that this change in its microenvironment might induce changes in its cell wall and cell surface properties. In our study, changes in growth kinetics, cell wall constitution using FTIR (Fourier Transform Infrared Spectroscopy), cell surface hydrophobicity, autoaggregation ability and antibiotic susceptibility of Staphylococcus aureus NCIM 2079 strain, in simulated microgravity (using RPM) was studied in detail. Noteworthy alterations in its growth kinetics, cell wall constitution, cell surface hydrophobicity, autoaggregation ability and antibiotic susceptibility especially to Erythromycin and Clindamycin were observed. Our data suggests that microgravity may cause alterations in the cellular envelope of planktonic S.aureus cultures.

Keywords: Cellular envelope; Random positioning machine (RPM); S. aureus; Simulated microgravity.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources