Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jul 19;36(28):e187.
doi: 10.3346/jkms.2021.36.e187.

Prediction of Neurological Outcomes in Out-of-hospital Cardiac Arrest Survivors Immediately after Return of Spontaneous Circulation: Ensemble Technique with Four Machine Learning Models

Affiliations

Prediction of Neurological Outcomes in Out-of-hospital Cardiac Arrest Survivors Immediately after Return of Spontaneous Circulation: Ensemble Technique with Four Machine Learning Models

Ji Han Heo et al. J Korean Med Sci. .

Abstract

Background: We performed this study to establish a prediction model for 1-year neurological outcomes in out-of-hospital cardiac arrest (OHCA) patients who achieved return of spontaneous circulation (ROSC) immediately after ROSC using machine learning methods.

Methods: We performed a retrospective analysis of an OHCA survivor registry. Patients aged ≥ 18 years were included. Study participants who had registered between March 31, 2013 and December 31, 2018 were divided into a develop dataset (80% of total) and an internal validation dataset (20% of total), and those who had registered between January 1, 2019 and December 31, 2019 were assigned to an external validation dataset. Four machine learning methods, including random forest, support vector machine, ElasticNet and extreme gradient boost, were implemented to establish prediction models with the develop dataset, and the ensemble technique was used to build the final prediction model. The prediction performance of the model in the internal validation and the external validation dataset was described with accuracy, area under the receiver-operating characteristic curve, area under the precision-recall curve, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Futhermore, we established multivariable logistic regression models with the develop set and compared prediction performance with the ensemble models. The primary outcome was an unfavorable 1-year neurological outcome.

Results: A total of 1,207 patients were included in the study. Among them, 631, 139, and 153 were assigned to the develop, the internal validation and the external validation datasets, respectively. Prediction performance metrics for the ensemble prediction model in the internal validation dataset were as follows: accuracy, 0.9620 (95% confidence interval [CI], 0.9352-0.9889); area under receiver-operator characteristics curve, 0.9800 (95% CI, 0.9612-0.9988); area under precision-recall curve, 0.9950 (95% CI, 0.9860-1.0000); sensitivity, 0.9594 (95% CI, 0.9245-0.9943); specificity, 0.9714 (95% CI, 0.9162-1.0000); PPV, 0.9916 (95% CI, 0.9752-1.0000); NPV, 0.8718 (95% CI, 0.7669-0.9767). Prediction performance metrics for the model in the external validation dataset were as follows: accuracy, 0.8509 (95% CI, 0.7825-0.9192); area under receiver-operator characteristics curve, 0.9301 (95% CI, 0.8845-0.9756); area under precision-recall curve, 0.9476 (95% CI, 0.9087-0.9867); sensitivity, 0.9595 (95% CI, 0.9145-1.0000); specificity, 0.6500 (95% CI, 0.5022-0.7978); PPV, 0.8353 (95% CI, 0.7564-0.9142); NPV, 0.8966 (95% CI, 0.7857-1.0000). All the prediction metrics were higher in the ensemble models, except NPVs in both the internal and the external validation datasets.

Conclusion: We established an ensemble prediction model for prediction of unfavorable 1-year neurological outcomes in OHCA survivors using four machine learning methods. The prediction performance of the ensemble model was higher than the multivariable logistic regression model, while its performance was slightly decreased in the external validation dataset.

Keywords: Cardiopulmonary Resuscitation; Heart Arrest; Machine Learning.

PubMed Disclaimer

Conflict of interest statement

The authors have no potential conflicts of interest to disclose.

Figures

Fig. 1
Fig. 1. Study flow chart.
CPC = cerebral performance category.
Fig. 2
Fig. 2. Receiver operating characteristic curves and precision-recall curves for the ensemble prediction model in various datasets. (A) and (B) in the original internal validation dataset, (C) and (D) in the external validation dataset, (E) and (F) in the cardiac subgroup internal validation dataset, (G) and (H) in the cardiac subgroup external validation dataset.

Similar articles

Cited by

References

    1. Holmberg MJ, Ross CE, Fitzmaurice GM, Chan PS, Duval-Arnould J, Grossestreuer AV, et al. Annual incidence of adult and pediatric in-hospital cardiac arrest in the United States. Circ Cardiovasc Qual Outcomes. 2019;12(7):e005580. - PMC - PubMed
    1. Hawkes C, Booth S, Ji C, Brace-McDonnell SJ, Whittington A, Mapstone J, et al. Epidemiology and outcomes from out-of-hospital cardiac arrests in England. Resuscitation. 2017;110:133–140. - PubMed
    1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–e596. - PubMed
    1. Nolan JP, Soar J, Cariou A, Cronberg T, Moulaert VR, Deakin CD, et al. European resuscitation council and European society of intensive care medicine guidelines for post-resuscitation care 2015: section 5 of the European resuscitation council guidelines for resuscitation 2015. Resuscitation. 2015;95:202–222. - PubMed
    1. Panchal AR, Bartos JA, Cabanas JG, Donnino MW, Drennan IR, Hirsch KG, et al. Part 3: adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020;142(16_) suppl_2:S366–S468. - PubMed

MeSH terms