Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Dec;1(10):1039-46.
doi: 10.1101/gad.1.10.1039.

Differences in DNA methylation during oogenesis and spermatogenesis and their persistence during early embryogenesis in the mouse

Affiliations
Free article

Differences in DNA methylation during oogenesis and spermatogenesis and their persistence during early embryogenesis in the mouse

J P Sanford et al. Genes Dev. 1987 Dec.
Free article

Abstract

We have examined the relative methylation levels of several dispersed repeated and low-copy-number gene sequences during gametogenesis and early embryogenesis. Southern blot analyses revealed that L1, intercisternal A particle (IAP), and major urinary protein (MUP) sequences were undermethylated extensively at MspI sites in DNA from diplotene oocytes. In contrast, the same sequences were highly methylated in DNA from pachytene spermatocytes, round spermatids, and epididymal sperm. These results indicate that there are genome-wide DNA methylation differences between oogenesis and spermatogenesis. Repeated sequences in DNA from cleavage-stage embryos and inner cell masses (ICM) were methylated at intermediate levels, consistent with transient maintenance of gametic methylation levels during early embryogenesis. Gametic differences in DNA methylation observed here indicate that methylation could provide a mechanism for imprinting maternal and paternal genomes resulting in differential regulation of parental genomes during early development.

PubMed Disclaimer

Publication types