Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2021 Dec;76(12):1577-1584.
doi: 10.1111/anae.15542. Epub 2021 Jul 20.

A quantitative evaluation of aerosol generation during supraglottic airway insertion and removal

Collaborators, Affiliations
Free article
Observational Study

A quantitative evaluation of aerosol generation during supraglottic airway insertion and removal

A J Shrimpton et al. Anaesthesia. 2021 Dec.
Free article

Abstract

Many guidelines consider supraglottic airway use to be an aerosol-generating procedure. This status requires increased levels of personal protective equipment, fallow time between cases and results in reduced operating theatre efficiency. Aerosol generation has never been quantitated during supraglottic airway use. To address this evidence gap, we conducted real-time aerosol monitoring (0.3-10-µm diameter) in ultraclean operating theatres during supraglottic airway insertion and removal. This showed very low background particle concentrations (median (IQR [range]) 1.6 (0-3.1 [0-4.0]) particles.l-1 ) against which the patient's tidal breathing produced a higher concentration of aerosol (4.0 (1.3-11.0 [0-44]) particles.l-1 , p = 0.048). The average aerosol concentration detected during supraglottic airway insertion (1.3 (1.0-4.2 [0-6.2]) particles.l-1 , n = 11), and removal (2.1 (0-17.5 [0-26.2]) particles.l-1 , n = 12) was no different to tidal breathing (p = 0.31 and p = 0.84, respectively). Comparison of supraglottic airway insertion and removal with a volitional cough (104 (66-169 [33-326]), n = 27), demonstrated that supraglottic airway insertion/removal sequences produced <4% of the aerosol compared with a single cough (p < 0.001). A transient aerosol increase was recorded during one complicated supraglottic airway insertion (which initially failed to provide a patent airway). Detailed analysis of this event showed an atypical particle size distribution and we subsequently identified multiple sources of non-respiratory aerosols that may be produced during airway management and can be considered as artefacts. These findings demonstrate supraglottic airway insertion/removal generates no more bio-aerosol than breathing and far less than a cough. This should inform the design of infection prevention strategies for anaesthetists and operating theatre staff caring for patients managed with supraglottic airways.

Keywords: COVID-19; SARS-CoV-2; aerosol-generating procedure; supraglottic airway device.

PubMed Disclaimer

Comment in

References

    1. Morawska L, Milton DK. It Is Time to Address Airborne Transmission of Coronavirus Disease 2019 (COVID-19). Clinical Infectious Diseases 2020; 71: 2311-3.
    1. Wilson NM, Norton A, Young FP, Collins DW. Airborne transmission of severe acute respiratory syndrome coronavirus-2 to healthcare workers: a narrative review. Anaesthesia 2020; 75: 1086-95.
    1. Prather KA, Marr LC, Schooley RT, McDiarmid MA, Wilson ME, Milton DK. Airborne transmission of SARS-CoV-2. Science 2020; 370: 303-4.
    1. Tang JW, Bahnfleth WP, Bluyssen PM, et al. Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Journal of Hospital Infection 2021; 110: 89-96.
    1. Greenhalgh T, Jimenez JL, Prather KA, Tufekci Z, Fisman D, Schooley R. Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet 2021; 397: 1603-5.

Publication types

MeSH terms

LinkOut - more resources