Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Nov;51(11):2281-2298.
doi: 10.1007/s40279-021-01521-x. Epub 2021 Jul 22.

Effects of Caffeine on Resistance Exercise: A Review of Recent Research

Affiliations
Review

Effects of Caffeine on Resistance Exercise: A Review of Recent Research

Jozo Grgic. Sports Med. 2021 Nov.

Abstract

In the last few years, a plethora of studies have explored the effects of caffeine on resistance exercise, demonstrating that this field of research is growing fast. This review evaluates and summarizes the most recent findings. Given that toxic doses of caffeine are needed to increase skeletal muscle contractility, the binding of caffeine to adenosine receptors is likely the primary mechanism for caffeine's ergogenic effects on resistance exercise. There is convincing evidence that caffeine ingestion is ergogenic for (i) one-repetition maximum, isometric, and isokinetic strength; and (ii) muscular endurance, velocity, and power in different resistance exercises, loads, and set protocols. Furthermore, there is some evidence that caffeine supplementation also may enhance adaptations to resistance training, such as gains in strength and power. Caffeine ingestion is ergogenic for resistance exercise performance in females, and the magnitude of these effects seems to be similar to that observed in men. Habitual caffeine intake and polymorphisms within CYP1A2 and ADORA2A do not seem to modulate caffeine's ergogenic effects on resistance exercise. Consuming lower doses of caffeine (e.g., 2-3 mg/kg) appears to be comparably ergogenic to consuming high doses of caffeine (e.g., 6 mg/kg). Minimal effective doses of caffeine seem to be around 1.5 mg/kg. Alternate caffeine sources such as caffeinated chewing gum, gel, and coffee are also ergogenic for resistance exercise performance. With caffeine capsules, the optimal timing of ingestion seems to be 30-60 min before exercise. Caffeinated chewing gums and gels may enhance resistance exercise performance even when consumed 10 min before exercise. It appears that caffeine improves performance in resistance exercise primarily due to its physiological effects. Nevertheless, a small portion of the ergogenic effect of caffeine seems to be placebo-driven.

PubMed Disclaimer

References

    1. Del Coso J, Muñoz G, Muñoz-Guerra J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl Physiol Nutr Metab. 2011;36(4):555–61. - PubMed - DOI - PMC
    1. Aguilar-Navarro M, Muñoz G, Salinero JJ, Muñoz-Guerra J, Fernández-Álvarez M, Plata MDM, et al. Urine caffeine concentration in doping control samples from 2004 to 2015. Nutrients. 2019;11(2):286. - PMC - DOI
    1. Grgic J, Grgic I, Pickering C, Schoenfeld BJ, Bishop DJ, Pedisic Z. Wake up and smell the coffee: caffeine supplementation and exercise performance—an umbrella review of 21 published meta-analyses. Br J Sports Med. 2020;54(11):681–8. - PubMed - DOI - PMC
    1. Grgic J, Mikulic P, Schoenfeld BJ, Bishop DJ, Pedisic Z. The influence of caffeine supplementation on resistance exercise: a review. Sports Med. 2019;49(1):17–30. - PubMed - DOI - PMC
    1. Blake MS, Johnson NR, Trautman KA, Grier JW, Stastny SN, Hackney KJ. Neither a multi-ingredient pre-workout supplement nor caffeine were effective at improving markers of blood flow or upper-body resistance exercise performance. Int J Exerc Sci. 2020;13(2):167–82. - PubMed - PMC

LinkOut - more resources